-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathcfgs_res50_dota_v4.py
66 lines (53 loc) · 1.71 KB
/
cfgs_res50_dota_v4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import numpy as np
from alpharotate.utils.pretrain_zoo import PretrainModelZoo
from configs._base_.models.retinanet_r50_fpn import *
from configs._base_.datasets.dota_detection import *
from configs._base_.schedules.schedule_1x import *
# schedule
BATCH_SIZE = 1
GPU_GROUP = "0,1,2"
NUM_GPU = len(GPU_GROUP.strip().split(','))
SAVE_WEIGHTS_INTE = 27000 * 2
DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE
MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH
WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE)
# dataset
# model
# backbone
pretrain_zoo = PretrainModelZoo()
PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH)
TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights')
# loss
CLS_WEIGHT = 1.0
REG_WEIGHT = 1.0 / 5.0
REG_LOSS_MODE = None
VERSION = 'RetinaNet_DOTA_2x_20190530'
"""
RetinaNet-H + 90
This is your result for task 1:
mAP: 0.6572506703256068
ap of each class:
plane:0.8831119481871824,
baseball-diamond:0.7554052281871614,
bridge:0.4217303911789575,
ground-track-field:0.6707230071220774,
small-vehicle:0.6592650965532021,
large-vehicle:0.5111005162900164,
ship:0.7261407293679227,
tennis-court:0.9071013790480128,
basketball-court:0.7822207883168055,
storage-tank:0.7883844023962553,
soccer-ball-field:0.544082059014562,
roundabout:0.6200017658693254,
harbor:0.5324027345069116,
swimming-pool:0.6718903394664805,
helicopter:0.3851996693792289
The submitted information is :
Description: RetinaNet_DOTA_2x_20190530_108w
Username: DetectionTeamCSU
Institute: CSU
Emailadress: [email protected]
TeamMembers: YangXue
"""