diff --git a/rtgym/envs/real_time_env.py b/rtgym/envs/real_time_env.py index 3437e1e..79e8d93 100644 --- a/rtgym/envs/real_time_env.py +++ b/rtgym/envs/real_time_env.py @@ -16,6 +16,7 @@ from collections import deque from threading import Thread, Lock import warnings +import numpy as np # General Interface class ============================================================================================== @@ -132,7 +133,7 @@ def render(self): # you need to perform observation capture in a parallel process and simply retrieve the last available observation # in the get_obs_rew_done_info() and reset() methods of your interface "time_step_timeout_factor": 1.0, # maximum elasticity in (fraction or number of) time-steps - "ep_max_length": 1000, # maximum episode length + "ep_max_length": np.inf, # maximum episode length "real_time": True, # True unless you want to revert to the usual turn-based RL setting (not tested yet) "async_threading": True, # True unless you want to revert to the usual turn-based RL setting (not tested yet) "act_in_obs": True, # When True, the action buffer will be appended to observations diff --git a/setup.py b/setup.py index 0d1dda0..01987ad 100644 --- a/setup.py +++ b/setup.py @@ -7,14 +7,14 @@ setup(name='rtgym', packages=[package for package in find_packages()], - version='0.4', + version='0.5', license='MIT', description='Easily implement custom OpenAI Gym environments for real-time applications', long_description=long_description, long_description_content_type="text/markdown", author='Yann Bouteiller', url='https://github.com/yannbouteiller/rtgym', - download_url='https://github.com/yannbouteiller/rtgym/archive/refs/tags/v0.4.tar.gz', + download_url='https://github.com/yannbouteiller/rtgym/archive/refs/tags/v0.5.tar.gz', keywords=['gym', 'real', 'time', 'custom', 'environment', 'reinforcement', 'learning', 'random', 'delays'], install_requires=['gym', 'numpy'], classifiers=[