-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdictionaries.jl
260 lines (247 loc) · 6.69 KB
/
dictionaries.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
## ------------------------------------------------------------------------
##
## Script name: dictionaries.jl
## Purpose: Dictionaries for cleaning the raw data
## Author: Yanwen Wang
## Date Created: 2024-12-08
## Email: [email protected]
##
## ------------------------------------------------------------------------
##
## Notes:
##
## ------------------------------------------------------------------------
# 1 Ethnicity -------------------------------------------------------------
# Ethnicity
ethn_dict = Dict(
1 => "汉族", 2 => "蒙古族", 3 => "回族", 4 => "藏族", 5 => "维吾尔族",
6 => "苗族", 7 => "彝族", 8 => "壮族", 9 => "布依族", 10 => "朝鲜族",
11 => "满族", 12 => "侗族", 13 => "瑶族", 14 => "白族", 15 => "土家族",
16 => "哈尼族", 17 => "哈萨克族", 18 => "傣族", 19 => "黎族", 20 => "傈僳族",
21 => "佤族", 22 => "畲族", 23 => "高山族", 24 => "拉祜族", 25 => "水族",
26 => "东乡族", 27 => "纳西族", 28 => "景颇族", 29 => "柯尔克孜族", 30 => "土族",
31 => "达斡尔族", 32 => "仫佬族", 33 => "羌族", 34 => "布朗族", 35 => "撒拉族",
36 => "毛南族", 37 => "仡佬族", 38 => "锡伯族", 39 => "阿昌族", 40 => "普米族",
41 => "塔吉克族", 42 => "怒族", 43 => "乌兹别克族", 44 => "俄罗斯族", 45 => "鄂温克族",
46 => "德昂族", 47 => "保安族", 48 => "裕固族", 49 => "京族", 50 => "塔塔尔族",
51 => "独龙族", 52 => "鄂伦春族", 53 => "赫哲族", 54 => "门巴族", 55 => "珞巴族",
56 => "基诺族"
)
# Ethnic groups
ethngrp_dict1 = Dict(
1 => "Han",
2 => "Mongolian",
3 => "Hui",
4 => "Tibetan",
5 => "Uyghur",
6 => "Southern",
7 => "Southern",
8 => "Southern",
9 => "Southern",
10 => "Korean",
11 => "Manchu",
12 => "Southern",
13 => "Southern",
14 => "Southern",
15 => "Southern",
16 => "Southern",
17 => "Kazakh",
18 => "Southern",
19 => "Southern",
20 => "Southern",
21 => "Southern",
22 => "Southern",
23 => "Southern",
24 => "Southern",
25 => "Southern",
26 => "Hui",
27 => "Southern",
28 => "Southern",
29 => "Kazakh",
30 => "Tibetan",
31 => "Mongolian",
32 => "Southern",
33 => "Southern",
34 => "Southern",
35 => "Hui",
36 => "Southern",
37 => "Southern",
38 => "Manchu",
39 => "Southern",
40 => "Southern",
41 => "Kazakh",
42 => "Southern",
43 => "Kazakh",
44 => "Kazakh",
45 => "Mongolian",
46 => "Southern",
47 => "Hui",
48 => "Tibetan",
49 => "Southern",
50 => "Kazakh",
51 => "Southern",
52 => "Mongolian",
53 => "Manchu",
54 => "Tibetan",
55 => "Tibetan",
56 => "Southern"
)
ethngrp_dict2 = Dict(
# Han
"汉族" => "Han",
# Tibetan
"藏族" => "Tibetan",
"裕固族" => "Tibetan",
"门巴族" => "Tibetan",
"珞巴族" => "Tibetan",
"土族" => "Tibetan",
# Hui
"回族" => "Hui",
"撒拉族" => "Hui",
"东乡族" => "Hui",
"保安族" => "Hui",
# Manchu
"满族" => "Manchu",
"赫哲族" => "Manchu",
"锡伯族" => "Manchu",
# Mongolian
"蒙古族" => "Mongolian",
"鄂伦春族" => "Mongolian",
"鄂温克族" => "Mongolian",
"达斡尔族" => "Mongolian",
# Kazakh
"哈萨克族" => "Kazakh",
"乌兹别克族" => "Kazakh",
"塔吉克族" => "Kazakh",
"柯尔克孜族" => "Kazakh",
"塔塔尔族" => "Kazakh",
"俄罗斯族" => "Kazakh",
# Korean
"朝鲜族" => "Korean",
# Uyghur
"维吾尔族" => "Uyghur",
# Southern (the rest of the ethnicities)
"苗族" => "Southern",
"彝族" => "Southern",
"壮族" => "Southern",
"布依族" => "Southern",
"侗族" => "Southern",
"瑶族" => "Southern",
"白族" => "Southern",
"土家族" => "Southern",
"哈尼族" => "Southern",
"傣族" => "Southern",
"黎族" => "Southern",
"傈僳族" => "Southern",
"佤族" => "Southern",
"畲族" => "Southern",
"高山族" => "Southern",
"拉祜族" => "Southern",
"水族" => "Southern",
"纳西族" => "Southern",
"景颇族" => "Southern",
"仫佬族" => "Southern",
"羌族" => "Southern",
"布朗族" => "Southern",
"毛南族" => "Southern",
"仡佬族" => "Southern",
"阿昌族" => "Southern",
"普米族" => "Southern",
"怒族" => "Southern",
"德昂族" => "Southern",
"京族" => "Southern",
"独龙族" => "Southern",
"基诺族" => "Southern"
)
# 2 Region ---------------------------------------------------------------------
region_dict = Dict(
"11" => "Huabei",
"12" => "Huabei",
"13" => "Huabei",
"14" => "Huabei",
"15" => "Huabei",
"21" => "Dongbei",
"22" => "Dongbei",
"23" => "Dongbei",
"31" => "Huadong",
"32" => "Huadong",
"33" => "Huadong",
"34" => "Huadong",
"35" => "Huadong",
"36" => "Huadong",
"37" => "HuaDong",
"41" => "Zhongnan",
"42" => "Zhongnan",
"43" => "Zhongnan",
"44" => "Zhongnan",
"45" => "Zhongnan",
"46" => "Zhongnan",
"50" => "Xinan",
"51" => "Xinan",
"52" => "Xinan",
"53" => "Xinan",
"54" => "Xinan",
"61" => "Xibei",
"62" => "Xibei",
"63" => "Xibei",
"64" => "Xibei",
"65" => "Xibei"
)
# 3 Marital status -------------------------------------------------------------
marst_dict = Dict(
1 => "never-married",
2 => "married",
3 => "divorced",
4 => "widowed"
)
# 4 Education -------------------------------------------------------------------
# Census 1982, 1990, 2000
eduraw_map = Vector{Union{Missing,Int}}(undef, 100)
fill!(eduraw_map, missing)
for i in 0:99
if i == 0
eduraw_map[i+1] = 1 # Illiterate
elseif 10 <= i && i < 20
eduraw_map[i+1] = 2 # Primary
elseif 20 <= i && i < 30
eduraw_map[i+1] = 3 # Middle
elseif 30 <= i && i < 40
eduraw_map[i+1] = 4 # High
elseif 40 <= i && i < 50
eduraw_map[i+1] = 5 # Some college
elseif 50 <= i && i < 80
eduraw_map[i+1] = 6 # College
end
end
edu_map = Vector{Union{Missing,Int}}(undef, 100)
fill!(edu_map, missing)
for i in 0:99
if i < 20
edu_map[i+1] = 1 # Primary or less
elseif 20 <= i && i < 30
edu_map[i+1] = 2 # Middle
elseif 30 <= i && i < 40
edu_map[i+1] = 3 # High
elseif 40 <= i && i < 80
edu_map[i+1] = 4 # College (including some college)
end
end
# Census 2010
eduraw_2010_dict = Dict(
1 => 1,
2 => 2,
3 => 3,
4 => 4,
5 => 5,
6 => 6,
7 => 6
)
edu_2010_dict = Dict(
1 => 1,
2 => 1,
3 => 2,
4 => 3,
5 => 4,
6 => 4,
7 => 4
)