-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_describe.R
228 lines (209 loc) · 5.45 KB
/
03_describe.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
## ------------------------------------------------------------------------
##
## Script name: 03_describe.R
## Purpose: Descriptive statistics
## Author: Yanwen Wang
## Date Created: 2024-11-20
## Email: [email protected]
##
## ------------------------------------------------------------------------
##
## Notes:
##
## ------------------------------------------------------------------------
# 1 Descriptive statistics --------------------------------------------------
# Select and construct variables of interest
childless_df <- seq_childless_1540 %>%
select(ID, complexity, 303:ncol(seq_childless_1540)) %>%
select(-pedu, -sibling, -migrant) %>%
# Get province code from family roster in 2018
left_join(
cfps2018_familyroster %>% select(pid, fid_provcd18),
by = c("ID" = "pid")
) %>%
rename(province = fid_provcd18) %>%
mutate(
region = case_when(
province >= 11 & province <= 15 ~ "HuaBei",
province >= 21 & province <= 23 ~ "DongBei",
province >= 31 & province <= 37 ~ "HuaDong",
province >= 41 & province <= 46 ~ "ZhongNan",
province >= 50 & province <= 54 ~ "XiNan",
province >= 61 & province <= 65 ~ "XiBei"
),
region = factor(region)
) %>%
mutate(gender = factor(gender)) %>%
mutate(
edu = case_when(
edu <= 3 ~ 0,
edu >= 4 ~ 1
),
edu = factor(edu)
) %>%
mutate(
hukou = case_when(
hukou == 1 ~ 0,
hukou == 3 ~ 1
),
hukou = factor(hukou)
) %>%
mutate(
n_cohort = case_when(
birthy < 1949 ~ "<1949",
birthy >= 1949 & birthy < 1966 ~ "1949-1966",
birthy >= 1966 & birthy < 1978 ~ "1966-1978",
birthy >= 1978 ~ ">=1978"
)
) %>%
mutate(
n_cohort = factor(
n_cohort,
levels = c("<1949", "1949-1966", "1966-1978", ">=1978")
)
) %>%
mutate(
age = 2018 - birthy,
agesq = age * age,
birthysq = birthy * birthy
) %>%
na.omit()
# Distribution of clusters
tabyl(childless_df, cluster5) %>% adorn_pct_formatting(2)
# Categorical variables
categorical <- bind_rows(
ctab(childless_df, gender, cluster5),
ctab(childless_df, edu, cluster5),
ctab(childless_df, hukou, cluster5)
) %>%
select(
variable,
`never married`,
`married late`,
`married early`,
`married ontime`,
`unpartnered`
)
# Continuous variables
continuous <- childless_df %>%
select(
cluster5, age, n_marriage, complexity
) %>%
group_by(cluster5) %>%
summarise_if(is.numeric, list(mean, sd), na.rm = TRUE) %>%
pivot_longer(
cols = -cluster5,
names_to = c("variable", "fn"),
names_sep = -4,
values_to = "value"
) %>%
mutate(
fn = case_when(
fn == "_fn1" ~ "mean",
fn == "_fn2" ~ "sd"
)
) %>%
pivot_wider(
id_cols = c(cluster5, variable),
names_from = fn,
values_from = value
) %>%
mutate(across(where(is.numeric), round, 2)) %>%
mutate(m_sd = paste0(mean, " (", sd, ")")) %>%
pivot_wider(
id_cols = variable,
names_from = cluster5,
values_from = m_sd
) %>%
select(
variable,
`never married`,
`married late`,
`married early`,
`married ontime`,
`unpartnered`
)
bind_rows(categorical, continuous)
# Average distance withiin each cluster
dist_df <- as.data.frame(omdist)
id_cluster_df <- seq_childless_1540 %>%
select(ID, cluster5, birthy) %>%
mutate(n = seq(1, 797))
id_cluster1 <- id_cluster_df %>%
filter(cluster5 == "never married") %>%
pull(n)
id_cluster2 <- id_cluster_df %>%
filter(cluster5 == "married late") %>%
pull(n)
id_cluster3 <- id_cluster_df %>%
filter(cluster5 == "married early") %>%
pull(n)
id_cluster4 <- id_cluster_df %>%
filter(cluster5 == "married ontime") %>%
pull(n)
id_cluster5 <- id_cluster_df %>%
filter(cluster5 == "unpartnered") %>%
pull(n)
dist_df %>%
select(id_cluster1) %>% # Change to id_cluster1, 2, 3, 4, 5
rowid_to_column() %>%
filter(rowid %in% id_cluster1) %>%
unlist() %>%
mean()
# Average age into first marriage by cluster
seq_childless_1540 %>%
# Change to other clusters to get the average age into first marriage
filter(cluster5 == "married late") %>%
select(ID, 2:302) %>%
pivot_longer(
cols = -ID,
names_to = "month",
values_to = "event"
) %>%
group_by(ID) %>%
filter(event == "first marriage") %>%
filter(row_number() == 1) %>%
ungroup() %>%
mutate(age = as.numeric(month) / 12 + 15) %>%
pull(age) %>%
mean()
# Ever-cohabited by cluster
id_ever_cohabited <- seq_childless_1540 %>%
select(ID, `0`:`300`) %>%
pivot_longer(
cols = -ID,
names_to = "month",
values_to = "status"
) %>%
group_by(ID) %>%
filter(any(status == "cohabit")) %>%
ungroup() %>%
pull(ID) %>%
unique()
seq_childless_1540 %>%
select(ID, cluster5) %>%
mutate(cohabit = ifelse(ID %in% id_ever_cohabited, 1, 0)) %>%
group_by(cluster5) %>%
summarise(cohabit_percent = round(mean(cohabit) * 100, 2),
cohabit_sd = round(sd(cohabit) * 100, 2)) %>%
ungroup()
# Ever divorced by cluster
id_ever_divorced <- seq_childless_1540 %>%
select(ID, `0`:`300`) %>%
pivot_longer(
cols = -ID,
names_to = "month",
values_to = "status"
) %>%
group_by(ID) %>%
filter(any(status == "unpartnered")) %>%
ungroup() %>%
pull(ID) %>%
unique()
seq_childless_1540 %>%
select(ID, cluster5) %>%
mutate(divorce = ifelse(ID %in% id_ever_divorced, 1, 0)) %>%
group_by(cluster5) %>%
summarise(divorce_percent = round(mean(divorce) * 100, 2),
divorce_sd = round(sd(divorce) * 100, 2)) %>%
ungroup()