-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathseq2seq.py
executable file
·440 lines (368 loc) · 16.9 KB
/
seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# -*- coding: UTF-8 -*-
import math
import os
import random
import sys
import time
import jieba
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.autograd import Variable
USE_CUDA = torch.cuda.is_available()
SOS_token = 2
EOS_token = 1
class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size, n_layers=1):
super(EncoderRNN, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.n_layers = n_layers
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers)
def forward(self, word_inputs, hidden):
seq_len = len(word_inputs)
embedded = self.embedding(word_inputs).view(seq_len, 1, -1)
output, hidden = self.gru(embedded, hidden)
return output, hidden
def init_hidden(self):
hidden = Variable(torch.zeros(self.n_layers, 1, self.hidden_size))
if USE_CUDA: hidden = hidden.cuda()
return hidden
class Attn(nn.Module):
def __init__(self, method, hidden_size, max_length):
super(Attn, self).__init__()
self.method = method
self.hidden_size = hidden_size
if self.method == 'general':
self.attn = nn.Linear(self.hidden_size, hidden_size)
elif self.method == 'concat':
self.attn = nn.Linear(self.hidden_size * 2, hidden_size)
self.other = nn.Parameter(torch.FloatTensor(1, hidden_size))
def forward(self, hidden, encoder_outputs):
seq_len = len(encoder_outputs)
attn_energies = Variable(torch.zeros(seq_len)) # B x 1 x S
if USE_CUDA: attn_energies = attn_energies.cuda()
for i in range(seq_len):
attn_energies[i] = self.score(hidden, encoder_outputs[i])
return F.softmax(attn_energies).unsqueeze(0).unsqueeze(0)
def score(self, hidden, encoder_output):
if self.method == 'dot':
energy = torch.dot(hidden.view(-1), encoder_output.view(-1))
return energy
elif self.method == 'general':
energy = self.attn(encoder_output)
energy = torch.dot(hidden.view(-1), encoder_output.view(-1))
return energy
class AttnDecoderRNN(nn.Module):
def __init__(self, attn_model, hidden_size, output_size, n_layers=1, dropout_p=0.1, max_length=10):
super(AttnDecoderRNN, self).__init__()
self.attn_model = attn_model
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.dropout_p = dropout_p
self.max_length = max_length
self.embedding = nn.Embedding(output_size, hidden_size)
self.gru = nn.GRU(hidden_size * 2, hidden_size, n_layers, dropout=dropout_p)
self.out = nn.Linear(hidden_size * 2, output_size)
if attn_model != 'none':
self.attn = Attn(attn_model, hidden_size, self.max_length)
def forward(self, word_input, last_context, last_hidden, encoder_outputs):
word_embedded = self.embedding(word_input).view(1, 1, -1) # S=1 x B x N
rnn_input = torch.cat((word_embedded, last_context.unsqueeze(0)), 2)
rnn_output, hidden = self.gru(rnn_input, last_hidden)
attn_weights = self.attn(rnn_output.squeeze(0), encoder_outputs)
context = attn_weights.bmm(encoder_outputs.transpose(0, 1)) # B x 1 x N
rnn_output = rnn_output.squeeze(0) # S=1 x B x N -> B x N
context = context.squeeze(1) # B x S=1 x N -> B x N
output = F.log_softmax(self.out(torch.cat((rnn_output, context), 1)))
#output = self.out(torch.cat((rnn_output, context), 1))
return output, context, hidden, attn_weights
class seq2seq(nn.Module):
def __init__(self):
super(seq2seq, self).__init__()
self.max_epoches = 100000
self.batch_index = 0
self.GO_token = 2
self.EOS_token = 1
self.input_size = 14
self.output_size = 15
self.hidden_size = 100
self.max_length = 15
self.show_epoch = 100
self.use_cuda = USE_CUDA
self.model_path = "./model/"
self.n_layers = 1
self.dropout_p = 0.05
self.beam_search = True
self.top_k = 5
self.alpha = 0.5
self.enc_vec = []
self.dec_vec = []
# 初始化encoder和decoder
self.encoder = EncoderRNN(self.input_size, self.hidden_size, self.n_layers)
self.decoder = AttnDecoderRNN('general', self.hidden_size, self.output_size, self.n_layers, self.dropout_p, self.max_length)
if USE_CUDA:
self.encoder = self.encoder.cuda()
self.decoder = self.decoder.cuda()
self.encoder_optimizer = optim.Adam(self.encoder.parameters())
self.decoder_optimizer = optim.Adam(self.decoder.parameters())
self.criterion = nn.NLLLoss()
def loadData(self):
with open("./data/enc.vec") as enc:
line = enc.readline()
while line:
self.enc_vec.append(line.strip().split())
line = enc.readline()
with open("./data/dec.vec") as dec:
line = dec.readline()
while line:
self.dec_vec.append(line.strip().split())
line = dec.readline()
def next(self, batch_size, eos_token=1, go_token=2, shuffle=False):
inputs = []
targets = []
if shuffle:
ind = random.choice(range(len(self.enc_vec)))
enc = [self.enc_vec[ind]]
dec = [self.dec_vec[ind]]
else:
if self.batch_index+batch_size >= len(self.enc_vec):
enc = self.enc_vec[self.batch_index:]
dec = self.dec_vec[self.batch_index:]
self.batch_index = 0
else:
enc = self.enc_vec[self.batch_index:self.batch_index+batch_size]
dec = self.dec_vec[self.batch_index:self.batch_index+batch_size]
self.batch_index += batch_size
for index in range(len(enc)):
enc = enc[0][:self.max_length] if len(enc[0]) > self.max_length else enc[0]
dec = dec[0][:self.max_length] if len(dec[0]) > self.max_length else dec[0]
enc = [int(i) for i in enc]
dec = [int(i) for i in dec]
dec.append(eos_token)
inputs.append(enc)
targets.append(dec)
inputs = Variable(torch.LongTensor(inputs)).transpose(1, 0).contiguous()
targets = Variable(torch.LongTensor(targets)).transpose(1, 0).contiguous()
if USE_CUDA:
inputs = inputs.cuda()
targets = targets.cuda()
return inputs, targets
def train(self):
self.loadData()
try:
self.load_state_dict(torch.load(self.model_path+'params.pkl'))
except Exception as e:
print(e)
print("No model!")
loss_track = []
for epoch in range(self.max_epoches):
start = time.time()
inputs, targets = self.next(1, shuffle=False)
loss, logits = self.step(inputs, targets, self.max_length)
loss_track.append(loss)
_,v = torch.topk(logits, 1)
pre = v.cpu().data.numpy().T.tolist()[0][0]
tar = targets.cpu().data.numpy().T.tolist()[0]
stop = time.time()
if epoch % self.show_epoch == 0:
print("-"*50)
print("epoch:", epoch)
print(" loss:", loss)
print(" target:%s\n output:%s" % (tar, pre))
print(" per-time:", (stop-start))
torch.save(self.state_dict(), self.model_path+'params.pkl')
def step(self, input_variable, target_variable, max_length):
teacher_forcing_ratio = 0.1
clip = 5.0
loss = 0 # Added onto for each word
self.encoder_optimizer.zero_grad()
self.decoder_optimizer.zero_grad()
input_length = input_variable.size()[0]
target_length = target_variable.size()[0]
encoder_hidden = self.encoder.init_hidden()
encoder_outputs, encoder_hidden = self.encoder(input_variable, encoder_hidden)
decoder_input = Variable(torch.LongTensor([[SOS_token]]))
decoder_context = Variable(torch.zeros(1, self.decoder.hidden_size))
decoder_hidden = encoder_hidden # Use last hidden state from encoder to start decoder
if USE_CUDA:
decoder_input = decoder_input.cuda()
decoder_context = decoder_context.cuda()
decoder_outputs = []
use_teacher_forcing = random.random() < teacher_forcing_ratio
use_teacher_forcing = True
if use_teacher_forcing:
for di in range(target_length):
decoder_output, decoder_context, decoder_hidden, decoder_attention = self.decoder(decoder_input, decoder_context, decoder_hidden, encoder_outputs)
loss += self.criterion(decoder_output, target_variable[di])
decoder_input = target_variable[di]
decoder_outputs.append(decoder_output.unsqueeze(0))
else:
for di in range(target_length):
decoder_output, decoder_context, decoder_hidden, decoder_attention = self.decoder(decoder_input, decoder_context, decoder_hidden, encoder_outputs)
loss += self.criterion(decoder_output, target_variable[di])
decoder_outputs.append(decoder_output.unsqueeze(0))
topv, topi = decoder_output.data.topk(1)
ni = topi[0][0]
decoder_input = Variable(torch.LongTensor([[ni]]))
if USE_CUDA: decoder_input = decoder_input.cuda()
if ni == EOS_token: break
loss.backward()
torch.nn.utils.clip_grad_norm(self.encoder.parameters(), clip)
torch.nn.utils.clip_grad_norm(self.decoder.parameters(), clip)
self.encoder_optimizer.step()
self.decoder_optimizer.step()
decoder_outputs = torch.cat(decoder_outputs, 0)
return loss.data[0] / target_length, decoder_outputs
def make_infer_fd(self, input_vec):
inputs = []
enc = input_vec[:self.max_length] if len(input_vec) > self.max_length else input_vec
inputs.append(enc)
inputs = Variable(torch.LongTensor(inputs)).transpose(1, 0).contiguous()
if USE_CUDA:
inputs = inputs.cuda()
return inputs
def predict(self):
try:
self.load_state_dict(torch.load(self.model_path+'params.pkl'))
except Exception as e:
print(e)
print("No model!")
loss_track = []
# 加载字典
str_to_vec = {}
with open("./data/enc.vocab") as enc_vocab:
for index,word in enumerate(enc_vocab.readlines()):
str_to_vec[word.strip()] = index
vec_to_str = {}
with open("./data/dec.vocab") as dec_vocab:
for index,word in enumerate(dec_vocab.readlines()):
vec_to_str[index] = word.strip()
while True:
input_strs = input("me > ")
# 字符串转向量
segement = jieba.lcut(input_strs)
input_vec = [str_to_vec.get(i, 3) for i in segement]
input_vec = self.make_infer_fd(input_vec)
# inference
if self.beam_search:
samples = self.beamSearchDecoder(input_vec)
for sample in samples:
outstrs = []
for i in sample[0]:
if i == 1:
break
outstrs.append(vec_to_str.get(i, "Un"))
print("ai > ", "".join(outstrs), sample[3])
else:
logits = self.infer(input_vec)
_,v = torch.topk(logits, 1)
pre = v.cpu().data.numpy().T.tolist()[0][0]
outstrs = []
for i in pre:
if i == 1:
break
outstrs.append(vec_to_str.get(i, "Un"))
print("ai > ", "".join(outstrs))
def infer(self, input_variable):
input_length = input_variable.size()[0]
encoder_hidden = self.encoder.init_hidden()
encoder_outputs, encoder_hidden = self.encoder(input_variable, encoder_hidden)
decoder_input = Variable(torch.LongTensor([[SOS_token]]))
decoder_context = Variable(torch.zeros(1, self.decoder.hidden_size))
decoder_hidden = encoder_hidden
if USE_CUDA:
decoder_input = decoder_input.cuda()
decoder_context = decoder_context.cuda()
decoder_outputs = []
for i in range(self.max_length):
decoder_output, decoder_context, decoder_hidden, decoder_attention = self.decoder(decoder_input, decoder_context, decoder_hidden, encoder_outputs)
decoder_outputs.append(decoder_output.unsqueeze(0))
topv, topi = decoder_output.data.topk(1)
ni = topi[0][0]
decoder_input = Variable(torch.LongTensor([[ni]])) # Chosen word is next input
if USE_CUDA: decoder_input = decoder_input.cuda()
if ni == EOS_token: break
decoder_outputs = torch.cat(decoder_outputs, 0)
return decoder_outputs
def tensorToList(self, tensor):
return tensor.cpu().data.numpy().tolist()[0]
def beamSearchDecoder(self, input_variable):
input_length = input_variable.size()[0]
encoder_hidden = self.encoder.init_hidden()
encoder_outputs, encoder_hidden = self.encoder(input_variable, encoder_hidden)
decoder_input = Variable(torch.LongTensor([[SOS_token]]))
decoder_context = Variable(torch.zeros(1, self.decoder.hidden_size))
decoder_hidden = encoder_hidden
if USE_CUDA:
decoder_input = decoder_input.cuda()
decoder_context = decoder_context.cuda()
decoder_output, decoder_context, decoder_hidden, decoder_attention = self.decoder(decoder_input, decoder_context, decoder_hidden, encoder_outputs)
topk = decoder_output.data.topk(self.top_k)
samples = [[] for i in range(self.top_k)]
dead_k = 0
final_samples = []
for index in range(self.top_k):
topk_prob = topk[0][0][index]
topk_index = int(topk[1][0][index])
samples[index] = [[topk_index], topk_prob, 0, 0, decoder_context, decoder_hidden, decoder_attention, encoder_outputs]
for _ in range(self.max_length):
tmp = []
for index in range(len(samples)):
tmp.extend(self.beamSearchInfer(samples[index], index))
samples = []
# 筛选出topk
df = pd.DataFrame(tmp)
df.columns = ['sequence', 'pre_socres', 'fin_scores', "ave_scores", "decoder_context", "decoder_hidden", "decoder_attention", "encoder_outputs"]
sequence_len = df.sequence.apply(lambda x:len(x))
df['ave_scores'] = df['fin_scores'] / sequence_len
df = df.sort_values('ave_scores', ascending=False).reset_index().drop(['index'], axis=1)
df = df[:(self.top_k-dead_k)]
for index in range(len(df)):
group = df.ix[index]
if group.tolist()[0][-1] == 1:
final_samples.append(group.tolist())
df = df.drop([index], axis=0)
dead_k += 1
print("drop {}, {}".format(group.tolist()[0], dead_k))
samples = df.values.tolist()
if len(samples) == 0:
break
if len(final_samples) < self.top_k:
final_samples.extend(samples[:(self.top_k-dead_k)])
return final_samples
def beamSearchInfer(self, sample, k):
samples = []
decoder_input = Variable(torch.LongTensor([[sample[0][-1]]]))
if USE_CUDA:
decoder_input = decoder_input.cuda()
sequence, pre_scores, fin_scores, ave_scores, decoder_context, decoder_hidden, decoder_attention, encoder_outputs = sample
decoder_output, decoder_context, decoder_hidden, decoder_attention = self.decoder(decoder_input, decoder_context, decoder_hidden, encoder_outputs)
# choose topk
topk = decoder_output.data.topk(self.top_k)
for k in range(self.top_k):
topk_prob = topk[0][0][k]
topk_index = int(topk[1][0][k])
pre_scores += topk_prob
fin_scores = pre_scores - (k - 1 ) * self.alpha
samples.append([sequence+[topk_index], pre_scores, fin_scores, ave_scores, decoder_context, decoder_hidden, decoder_attention, encoder_outputs])
return samples
def retrain(self):
try:
os.remove(self.model_path)
except Exception as e:
pass
self.train()
if __name__ == '__main__':
seq = seq2seq()
if sys.argv[1] == 'train':
seq.train()
elif sys.argv[1] == 'predict':
seq.predict()
elif sys.argv[1] == 'retrain':
seq.retrain()