-
Notifications
You must be signed in to change notification settings - Fork 3
/
gaze_prediction_and_evaluation.py
583 lines (464 loc) · 21.5 KB
/
gaze_prediction_and_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
"""
The code for computing the saliency metrics is adapted from
https://github.com/tarunsharma1/saliency_metrics/blob/master/salience_metrics.py
"""
import os
import argparse
import time
import shutil
import math
import torch
from torch.utils.data import DataLoader
from torch import nn
from torch.nn import functional as F
import torchvision
import numbers
import network
from bdda import BDDA
from sklearn.metrics import f1_score,precision_score,recall_score, roc_curve, roc_auc_score
parser = argparse.ArgumentParser(description='Feature Training and Test')
parser.add_argument('--data', metavar='DIR', help='path to dataset')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--best', default='', type=str, metavar='PATH', help='path to best checkpoint (default: none)')
parser.add_argument('--epochs', default=50, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N',
help='mini-batch size (default: 128), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--no_train', action='store_true', default=False)
parser.add_argument('--gridheight', default=16, type=int, metavar='N',
help='number of rows in grid')
parser.add_argument('--gridwidth', default=16, type=int, metavar='N',
help='number of columns in grid ')
parser.add_argument('--gazemaps', metavar='DIR', help='path to gaze map images folder')
parser.add_argument('--traingrid', default='', type=str, metavar='PATH', help='path to txt with grid entries for training images')
parser.add_argument('--valgrid', default='', type=str, metavar='PATH', help='path to txt with grid entries for validation images')
parser.add_argument('--testgrid', default='', type=str, metavar='PATH', help='path to txt with grid entries for test images')
parser.add_argument('--yolo5bb', metavar='DIR', help='path to folder of yolo5 bounding box txt files')
parser.add_argument('--visualizations', metavar='DIR', help='path to folder for visalization of predicted gaze maps and target')
parser.add_argument('--threshhold', default=0.5, type=float, metavar='N', help='threshold for object-level evaluation')
parser.add_argument('--lstm', default=False, action='store_true', help='use lstm module')
parser.add_argument('--convlstm', default=False, action='store_true', help='use convlstm module')
parser.add_argument('--sequence', default=6, type=int, metavar='N', help='sequence length for lstm module')
def main():
args = parser.parse_args()
dim = args.gridwidth*args.gridheight
th = 1/dim
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
model = network.Net(args.gridheight, args.gridwidth)
if args.lstm:
model = network.LstmNet(args.gridheight, args.gridwidth)
if args.convlstm:
model = network.ConvLSTMNet(args.gridheight, args.gridwidth, args.sequence)
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# define loss function (criterion) and optimizer
criterion = nn.BCEWithLogitsLoss().cuda(args.gpu)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,
betas=(0.9, 0.999), eps=1e-08,
weight_decay=args.weight_decay)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'], False)
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# Data loading code
if not args.no_train:
traindir = os.path.join(args.data, 'training')
valdir = os.path.join(args.data, 'validation')
train_dataset = BDDA("training", args.traingrid, traindir, th, args.gazemaps, (args.lstm or args.convlstm), args.sequence)
val_dataset = BDDA("validation", args.valgrid, valdir, th, args.gazemaps, (args.lstm or args.convlstm), args.sequence)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle= True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
testdir = os.path.join(args.data,'test')
test_dataset = BDDA("test", args.testgrid, testdir, th, args.gazemaps, (args.lstm or args.convlstm), args.sequence)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
best_loss = 1000000
if not args.no_train:
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args)
# evaluate on validation set
loss1 = validate(val_loader, model, criterion, args)
# remember best acc@1 and save checkpoint
is_best = loss1 < best_loss
best_loss = min(loss1, best_loss)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
}, is_best, args.best)
if args.best:
if os.path.isfile(args.best):
print("=> loading checkpoint '{}'".format(args.best))
checkpoint = torch.load(args.best)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'], False)
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.best, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
test(test_loader, model, criterion, args)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
if is_best:
torch.save(state, filename)
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
losses.update(loss.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses))
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 10))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter()
losses = AverageMeter()
model.eval()
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
losses.update(loss.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Validation: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
.format(
i, len(val_loader), batch_time=batch_time, loss=losses))
return loss
def test(test_loader, model, criterion, args):
batch_time = AverageMeter()
losses = AverageMeter()
kld_losses = AverageMeter()
cc_losses = AverageMeter()
model.eval()
tp = 0
fp = 0
fn = 0
all_count = 0
hm_max_values = []
gt = []
i = 0
heightfactor = 576//args.gridheight
widthfactor = 1024//args.gridwidth
smoothing = GaussianSmoothing(1, 5, 1).cuda(args.gpu)
with torch.no_grad():
end = time.time()
for i, (input, target, gaze_gt, img_names) in enumerate(test_loader):
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
gaze_gt = gaze_gt.cuda(args.gpu, non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
output = torch.sigmoid(output)
heatmap = grid2heatmap(output,[heightfactor,widthfactor],[args.gridheight,args.gridwidth],args)
heatmap = F.interpolate(heatmap, size=[36, 64], mode='bilinear', align_corners=False)
heatmap = smoothing(heatmap)
heatmap = F.pad(heatmap, (2, 2, 2, 2), mode='constant')
heatmap = heatmap.view(heatmap.size(0),-1)
heatmap = F.softmax(heatmap,dim=1)
# normalize
heatmap -= heatmap.min(1, keepdim=True)[0]
heatmap /= heatmap.max(1, keepdim=True)[0]
heatmap = heatmap.view(-1,1,36,64)
for j in range(heatmap.size(0)):
img_name = img_names[j]
heatmap_img = heatmap[j] # predicted gaze map
gt_img = gaze_gt[j] # original gaze map
##### compute object-level metrics
filename = os.path.join(args.yolo5bb, img_name+".txt")
if os.path.exists(filename):
with open(filename) as f:
for linestring in f:
all_count += 1
line = linestring.split()
width = float(line[3])
height = float(line[4])
x_center = float(line[1])
y_center = float(line[2])
x_min, x_max, y_min, y_max = bb_mapping(x_center, y_center, width, height)
# find maximum pixel value within object bounding box
gt_obj = gt_img[0, y_min:y_max+1, x_min:x_max+1]
gt_obj_max = torch.max(gt_obj)
heatmap_obj = heatmap_img[0, y_min:y_max+1, x_min:x_max+1]
heatmap_obj_max = torch.max(heatmap_obj)
# object is recognized if maximum pixel value is higher than th
gt_obj_recogn = gt_obj_max > 0.15
hm_obj_recogn = heatmap_obj_max > args.threshhold
hm_max_values.append(heatmap_obj_max)
if gt_obj_recogn:
gt.append(1)
else:
gt.append(0)
if (hm_obj_recogn and gt_obj_recogn):
tp +=1
elif (hm_obj_recogn and not gt_obj_recogn):
fp += 1
elif (not hm_obj_recogn and gt_obj_recogn):
fn += 1
visualization(heatmap_img.cpu(), gt_img.cpu(), args.visualizations, img_name)
kld = kl(heatmap, gaze_gt)
c = cc(heatmap,gaze_gt)
losses.update(loss.item(), input.size(0))
kld_losses.update(kld, input.size(0))
cc_losses.update(c, input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'KL {kl.val:.4f} ({kl.avg:.4f})\t'
'CC {cc.val:.4f} ({cc.avg:.4f})\t'
.format(
i, len(test_loader), batch_time=batch_time, loss=losses, kl=kld_losses, cc=cc_losses))
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'KL {kl.val:.4f} ({kl.avg:.4f})\t'
'CC {cc.val:.4f} ({cc.avg:.4f})\t'
.format(
i, len(test_loader), batch_time=batch_time, loss=losses, kl=kld_losses, cc=cc_losses))
precision = tp/(tp+fp)
recall = tp/(tp+fn)
tn = all_count-tp-fp-fn
acc = (tp+tn)/all_count
f1 = 2*precision*recall/(precision+recall)
print('Object-level results:')
print('tp:', tp, 'fp:', fp, 'tn:', tn, 'fn:', fn, 'sum:', all_count)
print('prec:', precision, 'recall:', recall, 'f1', f1, 'acc', acc)
print('AUC:', roc_auc_score(gt, hm_max_values))
def bb_mapping(x_center_rel, y_center_rel, width_rel, height_rel, img_width = 64, img_height = 36):
"""
Compute absolute bounding boxes values for given image size and given relative parameters
:param x_center_rel: relative x value of bb center
:param y_center_rel: relative y value of bb center
:param width_rel: relative width
:param height_rel: relative height
:return: absolute values of bb borders
"""
width_abs = width_rel*img_width
height_abs = height_rel*img_height
x_center_abs = x_center_rel*img_width
y_center_abs = y_center_rel*img_height
x_min = int(math.floor(x_center_abs - 0.5 * width_abs))
x_max = int(math.floor(x_center_abs + 0.5 * width_abs))
y_min = int(math.floor(y_center_abs - 0.5 * height_abs))
y_max = int(math.floor(y_center_abs + 0.5 * height_abs))
bb = [x if x>=0 else 0 for x in [x_min, x_max, y_min, y_max]]
return bb
def grid2heatmap(grid, size, num_grid, args):
"""
Rearrange and expand gridvector of size (gridheight*gridwidth) to size (576 x 1024) by duplicating values
:param grid: output vector
:param size: (H,W) of one expanded grid cell
:param num_grids: (H,W) = grid dimension
:param args: parser arguments
:return: 2D grid of size (576 x 1024)
"""
new_heatmap = torch.zeros(grid.size(0),size[0]*num_grid[0],size[1]*num_grid[1])
for i, item in enumerate(grid):
idx = torch.nonzero(item)
if idx.nelement() == 0:
print('Empty')
continue
for x in idx:
test = new_heatmap[i,x//num_grid[1]*size[0]:(x//num_grid[1]+1)*size[0],x%num_grid[1]*size[1]:(x%num_grid[1]+1)*size[1]]
new_heatmap[i,x//num_grid[1]*size[0]:(x//num_grid[1]+1)*size[0],x%num_grid[1]*size[1]:(x%num_grid[1]+1)*size[1]] = item[x]
output = new_heatmap.unsqueeze(1).cuda(args.gpu)
return output
def cc(s_map_all,gt_all):
eps = 1e-07
bs = s_map_all.size()[0]
r = 0
for i in range(0, bs):
s_map = s_map_all[i,:,:,:].squeeze()
gt = gt_all[i,:,:,:].squeeze()
s_map_norm = (s_map - torch.mean(s_map))/(eps + torch.std(s_map))
gt_norm = (gt - torch.mean(gt))/(eps + torch.std(gt))
a = s_map_norm.cpu()
b = gt_norm.cpu()
r += torch.sum(a*b) / (torch.sqrt(torch.sum(a*a) * torch.sum(b*b))+eps)
return r/bs
def kl(s_map_all, gt_all):
dims = len(s_map_all.size())
bs = s_map_all.size()[0]
eps = torch.tensor(1e-07)
kl = 0
if dims > 3:
for i in range(0, bs):
s_map = s_map_all[i,:,:,:].squeeze()
gt = gt_all[i,:,:,:].squeeze()
s_map = s_map/(torch.sum(s_map)*1.0 + eps)
gt = gt/(torch.sum(gt)*1.0 + eps)
gt = gt.to('cpu')
s_map = s_map.to('cpu')
kl += torch.sum(gt * torch.log(eps + gt/(s_map + eps)))
return kl/bs
def normalizeData(data):
return (data - torch.min(data)) / (torch.max(data) - torch.min(data))
def visualization(heatmap, gt, path, nr):
heatmap = torchvision.transforms.functional.to_pil_image(heatmap)
gt = torchvision.transforms.functional.to_pil_image(gt)
heatmap.save(os.path.join(path, '%s_pred.png'%nr))
gt.save(os.path.join(path, '%s_gt.png'%nr))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def kullback_leibler_divergence(y_true, y_pred, eps=1e-7):
"""
Kullback-Leiber divergence (sec 4.2.3 of [1]). Assumes shape (b, 1, h, w) for all tensors.
:param y_true: groundtruth.
:param y_pred: prediction.
:param eps: regularization epsilon.
:return: loss value (one symbolic value per batch element).
"""
P = y_pred
P = P / (eps + torch.sum(P, dim=[1, 2, 3], keepdim=True))
Q = y_true
Q = Q / (eps + torch.sum(Q, dim=[1, 2, 3], keepdim=True))
kld = torch.sum(Q * torch.log(eps + Q/(eps + P)), dim=[1, 2, 3])
return kld
class GaussianSmoothing(nn.Module):
"""
Apply gaussian smoothing on a
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
in the input using a depthwise convolution.
Arguments:
channels (int, sequence): Number of channels of the input tensors. Output will
have this number of channels as well.
kernel_size (int, sequence): Size of the gaussian kernel.
sigma (float, sequence): Standard deviation of the gaussian kernel.
dim (int, optional): The number of dimensions of the data.
Default value is 2 (spatial).
"""
def __init__(self, channels, kernel_size, sigma, dim=2):
super(GaussianSmoothing, self).__init__()
if isinstance(kernel_size, numbers.Number):
kernel_size = [kernel_size] * dim
if isinstance(sigma, numbers.Number):
sigma = [sigma] * dim
# The gaussian kernel is the product of the
# gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid(
[
torch.arange(size, dtype=torch.float32)
for size in kernel_size
]
)
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \
torch.exp(-((mgrid - mean) / (2 * std)) ** 2)
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
self.register_buffer('weight', kernel)
self.groups = channels
if dim == 1:
self.conv = F.conv1d
elif dim == 2:
self.conv = F.conv2d
elif dim == 3:
self.conv = F.conv3d
else:
raise RuntimeError(
'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(dim)
)
def forward(self, input):
"""
Apply gaussian filter to input.
Arguments:
input (torch.Tensor): Input to apply gaussian filter on.
Returns:
filtered (torch.Tensor): Filtered output.
"""
return self.conv(input, weight=self.weight, groups=self.groups)
if __name__ == '__main__':
main()