-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnelder_mead_DeBacker.py
executable file
·159 lines (106 loc) · 3.97 KB
/
nelder_mead_DeBacker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import sys
args = sys.argv
import numpy as np
import time
import subprocess
### use modified version of SCEConomy module
from SCEconomy_give_A import Economy, split_shock
from markov import calc_trans
import pickle
w_init = float(args[1])
p_init = float(args[2])
rc_init = float(args[3])
num_core = args[4]
print('the code is running with ', num_core, 'cores...')
prices_init = [w_init, p_init, rc_init]
input_path = './input_data/'
nd_log_file = '/home/ec2-user/Dropbox/case0/log.txt'
detailed_output_file = '/home/ec2-user/Dropbox/case0/detailed_output.txt'
f = open(detailed_output_file, 'w')
f.close()
dist_min = 10000000.0
econ_save = None
def curvedspace(begin, end, curve, num=100):
import numpy as np
ans = np.linspace(0, (end - begin)**(1.0/curve), num) ** (curve) + begin
ans[-1] = end #so that the last element is exactly end
return ans
agrid2 = curvedspace(0., 200., 2., 40)
kapgrid2 = curvedspace(0., 2., 2., 20)
zgrid2 = np.load('./input_data/zgrid.npy') ** 2.0
prob = np.load('./DeBacker/prob_epsz.npy')
### generate shock sequence ###
num_pop = 100_000
sim_time = 2_000
data_i_s = np.ones((num_pop, sim_time), dtype = int)
#need to set initial state for zp
data_i_s[:, 0] = 7
data_rand = np.random.rand(num_pop, sim_time)
calc_trans(data_i_s, data_rand, prob)
np.save(input_path + 'data_i_s_tmp.npy', data_i_s[:,-1000:])
split_shock(input_path + 'data_i_s_tmp', 100_000, int(num_core))
path_to_data_i_s = input_path + 'data_i_s_tmp'
### end generate shock sequence ###
def target(prices):
global dist_min
global econ_save
w_ = prices[0]
p_ = prices[1]
rc_ = prices[2]
print('computing for the case w = {:f}, p = {:f}, rc = {:f}'.format(w_, p_, rc_), end = ', ')
###set any additional condition/parameters
### alpha = 0.4 as default, and nu = 1. - phi - alpha
econ = Economy(agrid = agrid2, kapgrid = kapgrid2, zgrid = zgrid2, prob = prob, path_to_data_i_s = path_to_data_i_s)
econ.set_prices(w = w_, p = p_, rc = rc_)
with open('econ.pickle', mode='wb') as f: pickle.dump(econ, f)
#with open('econ.pickle', mode='rb') as f: econ = pickle.load(f)
t0 = time.time()
result = subprocess.run(['mpiexec', '-n', num_core, 'python', 'SCEconomy_give_A.py'], stdout=subprocess.PIPE)
t1 = time.time()
f = open(detailed_output_file, 'ab') #use byte mode
f.write(result.stdout)
f.close()
print('etime: {:f}'.format(t1 - t0), end = ', ')
time.sleep(1)
with open('econ.pickle', mode='rb') as f: econ = pickle.load(f)
w = econ.w
p = econ.p
rc = econ.rc
moms = econ.moms
dist = np.sqrt(moms[0]**2.0 + moms[1]**2.0 + moms[2]**2.0)
if w != w_ or p != p_ or rc != rc_:
print('err: input prices and output prices do not coincide.')
print('w = ', w, ', w_ = ', w_)
print('p = ', p, ', p_ = ', p_)
print('rc = ', rc, ', rc_ = ', rc_)
# return
print('dist = {:f}'.format(dist))
f = open(nd_log_file, 'a')
f.writelines(str(w) + ', ' + str(p) + ', ' + str(rc) + ', ' + str(dist) + ', ' + str(moms[0]) + ', ' + str(moms[1]) + ', ' + str(moms[2]) + ', ' + str(moms[3]) + '\n')
f.close()
if dist < dist_min:
econ_save = econ
dist_min = dist
return dist
if __name__ == '__main__':
f = open(nd_log_file, 'w')
f.writelines('w, p, rc, dist, mom0, mom1, mom2, mom3\n')
f.close()
nm_result = None
from scipy.optimize import minimize
for i in range(5):
nm_result = minimize(target,prices_init, method='Nelder-Mead')
if nm_result.fun < 1.0e-3:
break
else:
prices_init = nm_result.x #restart
f = open(nd_log_file, 'a')
f.write(str(nm_result))
f.close()
###calculate other important variables###
econ = econ_save
with open('econ.pickle', mode='wb') as f: pickle.dump(econ, f)
#
#econ.calc_sweat_eq_value()
#econ.simulate_other_vars()
#econ.save_result()