-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
260 lines (224 loc) · 9.79 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import logging
from pathlib import Path
from typing import Callable, Optional, Union
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from metrics import alt_compute_eer
from utils import save_checkpoint, save_pred, set_learning_rate
LOGGER = logging.getLogger(__name__)
class Trainer(object):
"""This is a lightweight wrapper for training models with gradient descent.
Its main function is to store information about the training process.
Args:
epochs (int): The amount of training epochs.
batch_size (int): The batch size for training.
device (str): The device to train on.
optimizer_fn (Callable): Function for constructing the optimzer (Default: Adam).
optimizer_kwargs (dict): Kwargs for the optimzer.
"""
def __init__(
self,
epochs: int,
batch_size: int,
device: str,
lr: float = 1e-3,
optimizer_fn: Callable = torch.optim.Adam,
optimizer_kwargs: Optional[dict] = {},
) -> None:
self.epochs = int(epochs)
self.batch_size = int(batch_size)
self.device = device
self.lr = lr
self.optimizer_fn = optimizer_fn
self.optimizer_kwargs = optimizer_kwargs
assert self.epochs > 0
assert self.batch_size > 0
assert isinstance(optimizer_fn, Callable)
assert isinstance(optimizer_kwargs, dict)
self.optimizer_kwargs["lr"] = self.lr
class ModelTrainer(Trainer):
"""A model trainer for binary classification"""
def train(
self,
model: nn.Module,
dataset_train: Dataset,
dataset_test: Dataset, # test or validation
save_dir: Union[str, Path] = None, # directory to save model checkpoints
pos_weight: Optional[torch.FloatTensor] = None,
checkpoint: dict = None,
) -> None:
if save_dir:
save_dir: Path = Path(save_dir)
if not save_dir.exists():
save_dir.mkdir(parents=True)
train_loader = DataLoader(
dataset_train,
batch_size=self.batch_size,
shuffle=True,
drop_last=False,
)
test_loader = DataLoader(
dataset_test,
batch_size=self.batch_size,
drop_last=False,
)
criterion = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
optim = self.optimizer_fn(model.parameters(), **self.optimizer_kwargs)
start_epoch = 0
#######################################################################
if checkpoint is not None:
model.load_state_dict(checkpoint["state_dict"])
optim.load_state_dict(checkpoint["optimizer"])
start_epoch = checkpoint["epoch"] + 1
LOGGER.info(f"Loaded checkpoint from epoch {start_epoch - 1}")
set_learning_rate(self.lr, optim)
#######################################################################
best_model = None
best_acc = 0
for epoch in range(start_epoch, self.epochs):
###################################################################
# train
model.train()
total_loss = 0
num_correct = 0.0
num_total = 0.0
for _, (batch_x, _, _, batch_y) in enumerate(train_loader):
# get actual batch size
curr_batch_size = batch_x.size(0)
num_total += curr_batch_size
# get batch input x
batch_x = batch_x.to(self.device)
# make batch label y a vector
batch_y = batch_y.unsqueeze(1).type(torch.float32).to(self.device)
# forward
batch_out = model(batch_x) # (B, 1)
# compute loss
batch_loss = criterion(batch_out, batch_y) # (1, )
# get binary prediction {0, 1}
batch_pred = (torch.sigmoid(batch_out) + 0.5).int()
# count number of correct predictions
num_correct += (batch_pred == batch_y.int()).sum(dim=0).item()
# accumulate loss
total_loss += batch_loss.item() * curr_batch_size
# backwards
optim.zero_grad() # reset gradient
batch_loss.backward() # compute gradient
optim.step() # update params
# get loss for this epoch
total_loss /= num_total
# get training accuracy for this epoch
train_acc = (num_correct / num_total) * 100
###################################################################
# evaluation
model.eval()
num_correct = 0.0
num_total = 0.0
# save test label and predictions
y_true = []
y_pred = []
for batch_x, _, _, batch_y in test_loader:
# get actual batch size
curr_batch_size = batch_x.size(0)
num_total += curr_batch_size
# get batch input x
batch_x = batch_x.to(self.device)
# make batch label y a vector
batch_y = batch_y.unsqueeze(1).type(torch.float32).to(self.device)
y_true.append(batch_y.clone().detach().int().cpu())
# forward / inference
batch_out = model(batch_x)
# get binary prediction {0, 1}
batch_pred = (torch.sigmoid(batch_out) + 0.5).int()
y_pred.append(batch_pred.clone().detach().cpu())
# count number of correct predictions
num_correct += (batch_pred == batch_y.int()).sum(dim=0).item()
# get test accuracy
test_acc = (num_correct / num_total) * 100
# get all labels and predictions
y_true: np.ndarray = torch.cat(y_true, dim=0).numpy()
y_pred: np.ndarray = torch.cat(y_pred, dim=0).numpy()
# get auc and eer
test_eer = alt_compute_eer(y_true, y_pred)
LOGGER.info(
f"[{epoch:03d}]: loss: {round(total_loss, 4)} - train acc: {round(train_acc, 2)} - test acc: {round(test_acc, 2)} - test eer : {round(test_eer, 4)}"
)
if test_acc > best_acc:
best_acc = test_acc
LOGGER.info(f"Best Test Accuracy: {round(best_acc, 3)}")
if save_dir:
# save model checkpoint
save_path = save_dir / "best.pt"
save_checkpoint(
epoch=epoch,
model=model,
optimizer=optim,
model_kwargs=self.__dict__,
filename=save_path,
)
LOGGER.info(f"Best Model Saved: {save_path}")
# save labels and predictions
save_path = save_dir / "best_pred.json"
save_pred(y_true, y_pred, save_path)
LOGGER.info(f"Prediction Saved: {save_path}")
return None
def eval(
self,
model: nn.Module,
dataset_test: Dataset,
save_dir: Union[str, Path] = None, # directory to save model predictions
checkpoint: dict = None,
) -> None:
if save_dir:
save_dir: Path = Path(save_dir)
if not save_dir.exists():
save_dir.mkdir(parents=True)
test_loader = DataLoader(
dataset_test,
batch_size=self.batch_size,
drop_last=False,
)
#######################################################################
if checkpoint is not None:
model.load_state_dict(checkpoint["state_dict"])
# optim.load_state_dict(checkpoint["optimizer"])
start_epoch = checkpoint["epoch"] + 1
LOGGER.info(f"Loaded checkpoint from epoch {start_epoch - 1}")
###################################################################
# evaluation
model.eval()
num_correct = 0.0
num_total = 0.0
# save test label and predictions
y_true = []
y_pred = []
for batch_x, _, _, batch_y in test_loader:
# get actual batch size
curr_batch_size = batch_x.size(0)
num_total += curr_batch_size
# get batch input x
batch_x = batch_x.to(self.device)
# make batch label y a vector
batch_y = batch_y.unsqueeze(1).type(torch.float32).to(self.device)
y_true.append(batch_y.clone().detach().int().cpu())
# forward / inference
batch_out = model(batch_x)
# get binary prediction {0, 1}
batch_pred = (torch.sigmoid(batch_out) + 0.5).int()
y_pred.append(batch_pred.clone().detach().cpu())
# count number of correct predictions
num_correct += (batch_pred == batch_y.int()).sum(dim=0).item()
# get test accuracy
test_acc = (num_correct / num_total) * 100
# get all labels and predictions
y_true: np.ndarray = torch.cat(y_true, dim=0).numpy()
y_pred: np.ndarray = torch.cat(y_pred, dim=0).numpy()
# get auc and eer
test_eer = alt_compute_eer(y_true, y_pred)
LOGGER.info(f"test acc: {round(test_acc, 2)} - test eer : {round(test_eer, 4)}")
if save_dir:
# save labels and predictions
save_path = save_dir / "best_pred.json"
save_pred(y_true, y_pred, save_path)
LOGGER.info(f"Prediction Saved: {save_path}")