-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathiknet_optimization.py
121 lines (102 loc) · 3.84 KB
/
iknet_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
import optuna
import pytorch_pfn_extras as ppe
import pytorch_pfn_extras.training.extensions as extensions
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Subset
from iknet import IKDataset, IKNet
args = None
def get_data_loaders(args):
dataset = IKDataset(args.kinematics_pose_csv, args.joint_states_csv)
train_size = int(len(dataset) * args.train_val_ratio)
train_dataset = Subset(dataset, list(range(0, train_size)))
val_dataset = Subset(dataset, list(range(train_size, len(dataset))))
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=True)
return train_loader, val_loader
def train(manager, args, model, device, train_loader):
result = float("inf")
while not manager.stop_trigger:
model.train()
for data, target in train_loader:
with manager.run_iteration(step_optimizers=["main"]):
data, target = data.to(device), target.to(device)
output = model(data)
loss = (output - target).norm()
result = loss.item() / args.batch_size
ppe.reporting.report({"train/loss": result})
loss.backward()
return result
def validate(args, model, device, data, target):
model.eval()
data, target = data.to(device), target.to(device)
output = model(data)
loss = (output - target).norm()
ppe.reporting.report({"val/loss": loss.item() / args.batch_size})
def objective(trial):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = IKNet(trial)
model.to(device)
train_loader, val_loader = get_data_loaders(args)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
trigger = ppe.training.triggers.EarlyStoppingTrigger(
check_trigger=(3, "epoch"), monitor="val/loss"
)
my_extensions = [
extensions.LogReport(),
extensions.ProgressBar(),
extensions.observe_lr(optimizer=optimizer),
extensions.ParameterStatistics(model, prefix="model"),
extensions.VariableStatisticsPlot(model),
extensions.Evaluator(
val_loader,
model,
eval_func=lambda data, target: validate(args, model, device, data, target),
progress_bar=True,
),
extensions.PlotReport(["train/loss", "val/loss"], "epoch", filename="loss.png"),
extensions.PrintReport(
[
"epoch",
"iteration",
"train/loss",
"lr",
"val/loss",
]
),
]
manager = ppe.training.ExtensionsManager(
model,
optimizer,
args.epochs,
extensions=my_extensions,
iters_per_epoch=len(train_loader),
stop_trigger=trigger,
)
return train(manager, args, model, device, train_loader)
def main():
study = optuna.create_study(direction="minimize")
study.optimize(objective, n_trials=100)
trial = study.best_trial
print("value: ", trial.value)
print("params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--kinematics-pose-csv",
type=str,
default="./dataset/train/kinematics_pose.csv",
)
parser.add_argument(
"--joint-states-csv", type=str, default="./dataset/train/joint_states.csv"
)
parser.add_argument("--train-val-ratio", type=float, default=0.8)
parser.add_argument("--batch-size", type=int, default=10000)
parser.add_argument("--epochs", type=int, default=100)
parser.add_argument("--lr", type=float, default=0.01)
args = parser.parse_args()
main()