forked from steveseguin/color-grading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pre-lut-maker.py
152 lines (132 loc) · 4.28 KB
/
pre-lut-maker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import cv2
import numpy as np
from matplotlib import pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
LUT2 = np.zeros((492))
for y in range(22500,25500):
x = int(round((y/100-225)/1 + 1/(1.2**(225-y/100))+225))
LUT2[x-226] = int(round(y/100.0))
print(x)
#asdf
#print(LUT2) ## INPUT-230 = LUTindex; min INDEX = 230, higher than ~345 input is just 255 output
#LUT1 = np.zeros_like(LUT2)
LUT1 = 255-np.flip(LUT2)
#print(LUT1) ## INPUT+120 = LUTINDEX; max INPUT 25; min -94 ?
#print(LUT1[119])
#asdf
img = cv2.imread("image1.png", 1)
w,h,_ = np.shape(img);
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
right = [[147,163,96],[154,64,73],[0,166,153],
[61,65,93],[96,102,102],[247,185,48],
[62,63,64],[245,243,236],[138,83,129]]
wrong = np.zeros_like(right)
color = ('r','g','b')
for x in range(3):
for y in range(3):
print()
for i,col in enumerate(color):
seg = img[int(x*w/3):int((x+1)*w/3),int(y*h/3):int((y+1)*h/3),:]
histr = cv2.calcHist([seg],[i],None,[256],[0,256])
j = x*3+y+1
print(np.where(np.max(histr)==histr)[0][0], right[j-1][i])
wrong[j-1][i]=np.where(np.max(histr)==histr)[0][0]
plt.subplot(3,3,j)
plt.plot(histr,color = col)
plt.xlim([0,256])
img2 = cv2.imread("Image2.png", 1)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
img2 = img2.astype(np.float32, copy=False)
tb=np.zeros(3)
tm=np.zeros(3)
tc=np.zeros(3)
for rgb in range(3):
tb[rgb]=0
tm[rgb]=1
tt = 999
tc[rgb]=0
for cc in range(-10,50):
c=cc/3000.0
#print(cc)
for mm in range(1,40):
m = mm/10000.0
for b in range(-100,20):
delta = np.ravel(right)[rgb::3]-np.ravel(wrong*m+b+np.power(wrong,2)*c)[rgb::3]
#print(delta)
power = np.power(delta,2)
#print(power)
mean = np.mean(power)
#print(mean)
final = np.sqrt(mean)
if (final<tt):
tb[rgb] = b
tm[rgb] = m
tt = final
tc[rgb] = c
else:
continue
#print(final,m,b)
print("Best:",tt,"m:",tm[rgb],"b:",tb[rgb],"c:",tc[rgb])
#mb = np.min(tb)+np.min(img2)
#print("min b",mb)
#if (mb<0): ## Darken a bit; just a safe amount
# print("Darkening not applied; will need to crop sub black values")
# mb=0
#else:
# print("Darking APPLIED! - no sub 0 cropping needed")
mb=0## TMP
for rgb in range(3):
img2[:,:,rgb] = img2[:,:,rgb]*tm[rgb] + tb[rgb] + np.power(img2[:,:,rgb],2)*tc[rgb] - mb
# print(np.min(img2))
# img2-=np.min(img2)
#mh=255-np.max(img2)
#if (mh<0):
# mh=0;
#mh = mh-mb/2
#img2+=mh
where = np.where((img2>225) &(img2<492))
out = LUT2[np.uint16(np.round(img2[where]-225))]
print(np.shape(LUT2))
img2[where] = out
#print(np.shape(where))
#print(LUT1) ## INPUT+120 = LUTINDEX; max INPUT 25; min -94 ?
where = np.where((img2<=30) & (img2>-461))
out = LUT1[np.uint16(np.round(img2[where]+461))]
print(out)
img2[where] = out
img2[np.where(img2>255)]=255 # cut out highlights
img2[np.where(img2<0)]=0
img2 = img2.astype(np.uint8, copy=False)
#cv2.imshow("image",cv2.cvtColor(cv2.resize(img2,(1920,1080)), cv2.COLOR_RGB2BGR))
#cv2.waitKey(1)
cv2.imshow("image",cv2.cvtColor(cv2.resize(img2,(1920,1080)), cv2.COLOR_RGB2BGR))
cv2.waitKey(0)
#cv2.imwrite("post-lut.png",cv2.cvtColor(img2, cv2.COLOR_RGB2BGR))
cap = cv2.VideoCapture('P1002881.MOV')
while(cap.isOpened()):
# Capture frame-by-frame
ret, frame = cap.read()
if ret == True:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = cv2.resize(frame,(1280,720))
frame = frame.astype(np.float32, copy=False)
for rgb in range(3):
frame[:,:,rgb] = frame[:,:,rgb]*tm[rgb] + tb[rgb] + np.power(frame[:,:,rgb],2)*tc[rgb] - mb
frame+=35 ########## BRIGHTNESS
print(".")
########## TAPER OFF ENDS
where = np.where(frame>225)
out = LUT2[np.uint16(np.round(frame[where]-225))]
frame[where] = out
##
where = np.where((frame<=30) & (frame>-461))
out = LUT1[np.uint16(np.round(frame[where]+461))]
frame[where] = out
###########
frame[np.where(frame>255)]=255 # cut out highlights
frame[np.where(frame<0)]=0 # cut out shadows
frame = frame.astype(np.uint8, copy=False)
cv2.imshow("image",cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
cv2.waitKey(1)