forked from chenxofhit/Loc-PCA-CMI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpca_pmi.m
141 lines (129 loc) · 4.92 KB
/
pca_pmi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
function [G,Gval,l]=pca_pmi(data,lambda,l0)
% PCA_PMI is an function to construct the Gene Expression Network by using
% Pathing-consist Algorithm with PMI.
% G=PCA_PMI(data,lambda) "data" is a n*T matrix, with n genes and T samples,
% the network of the n genes will be constructed. "lambda" is a threshold
% of reducing edges.
% G=PCA_PMI(data,lambda,l0) "l0" is a positive integer, if the
% algorithm is processing in the order larger than "l0", the algorithm
% will stop reducing the edge and return the network.
% G=KPCA_PMI(...) "G" returns a binary lower triangle square matrix, the
% element "1" means there is an edge in the matching place, while the
% element "0" means there is no edge in the matching place in the network.
% [G,GVAL]=PCA_PMI(...) "Gval" returns a lower triangle square matrix,
% every entry in "Gval" represents the strength of the matching edge
% [G,GVAL,l]=PCA_PMI(...) "l" returns a final order where the algorithm processes
n_gene=size(data,1);
G=ones(n_gene,n_gene);
G=tril(G,-1)';
G=G+G';
Gval=G;
l=-1;t=0;
while t==0
l=l+1;
if nargin==3
if l>l0
G=tril(G,-1)'; Gval=tril(Gval,-1)';
l=l-1; % The value of l is the last order of pc algorith
return
end
end
[G,Gval,t]=edgereduce(G,Gval,l,data,t,lambda);
if t==0
% disp('No edge is reduce! Algorithm finished!');%For Debugging
break;
else
t=0;
end
end
G=tril(G,-1)'; Gval=tril(Gval,-1)';
l=l-1; % The value of l is the last order of pc algorith
end
%% edgereduce is pcalg
function [G,Gval,t]=edgereduce(G,Gval,l,data,t,lambda)
%[nrow,ncol]=find(G~=0);%For debugging
if l==0
for i=1:size(G,1)-1
for j=i+1:size(G,1)
if G(i,j)~=0
cmiv=cmi(data(i,:),data(j,:));
Gval(i,j)=cmiv; Gval(j,i)=cmiv;
if cmiv<lambda
G(i,j)=0;G(j,i)=0;
end
end
end
end
t=t+1;
else
for i=1:size(G,1)-1
for j=i+1:size(G,1)
if G(i,j)~=0
i;%For debugging
j;%For debugging
adj=[] ;%For debugging
for k=1:size(G,1)
if G(i,k)~=0 && G(j,k)~=0
adj=[adj,k] ;
end
end
if size(adj,2)>=l
combntnslist=nchoosek(adj,l);
combntnsrow=size(combntnslist,1);
cmiv=0;
v1=data(i,:);v2=data(j,:);
for k=1:combntnsrow
vcs=data(combntnslist(k,:),:);
a=cmi(v1,v2,vcs) ;
cmiv=max(cmiv,a);
end
cmiv;%For debugging
Gval(i,j)=cmiv; Gval(j,i)=cmiv;
if cmiv<lambda
G(i,j)=0; G(j,i)=0;
end
t=t+1;
end
end
end
end
end
end
%% compute partial mutual information of x and y
function cmiv=cmi(v1,v2,vcs)
if nargin==2
c1=det(cov(v1));
c2=det(cov(v2));
c3=det(cov(v1,v2));
cmiv=0.5*log(c1*c2/c3);
elseif nargin==3
n1 = size(vcs,1);
n = n1 +2;
Cov1 = var(v1);
Cov2 = var(v2);
Covm = cov([v1;v2;vcs]');
Covm1 = cov(vcs');
Covm2 =cov([v1;vcs]');
Covm3 = cov([v2;vcs]');
InvCov1 = 1/Cov1;
InvCov2 = 1/Cov2;
InvCovm = inv(Covm);
InvCovm1 = inv(Covm1);
InvCovm2 = inv(Covm2);
InvCovm3 = inv(Covm3);
C11 = -InvCovm(1,2)*(1/(InvCovm(2,2)-InvCovm3(1,1)+InvCov2))*InvCovm(1,2)+InvCovm(1,1);
C12 = 0;
C13 = -InvCovm(1,2)*(1/(InvCovm(2,2)-InvCovm3(1,1)+InvCov2))*(InvCovm(2,3:2+n1)-InvCovm3(1,2:1+n1))+InvCovm(1,3:2+n1);
C23 = -InvCovm(1,2)*(1/(InvCovm(1,1)-InvCovm2(1,1)+InvCov1))*(InvCovm(1,3:2+n1)-InvCovm2(1,2:1+n1))+InvCovm(2,3:2+n1);
C22 = -InvCovm(1,2)*(1/(InvCovm(1,1)-InvCovm2(1,1)+InvCov1))*InvCovm(1,2)+InvCovm(2,2);
C33 = -(InvCovm(2,3:2+n1)-InvCovm3(1,2:1+n1))'*(1/(InvCovm(2,2)-InvCovm3(1,1)+InvCov2))*(InvCovm(2,3:2+n1)-InvCovm3(1,2:1+n1))-(InvCovm(1,3:2+n1)-InvCovm2(1,2:1+n1))'*(1/(InvCovm(1,1)-InvCovm2(1,1)+InvCov1))*(InvCovm(1,3:2+n1)-InvCovm2(1,2:1+n1))+(InvCovm(3:2+n1,3:2+n1)-InvCovm3(2:1+n1,2:1+n1))+(InvCovm(3:2+n1,3:2+n1)-InvCovm2(2:1+n1,2:1+n1))+InvCovm1;
InvC = [[C11,C12,C13];[C12,C22,C23];[[C13',C23'],C33]];
% C = inv(InvC);
C0 = (det(Covm)*det(Covm1)/(det(Covm2)*det(Covm3)))*Cov1*Cov2*(InvCovm(2,2)-InvCovm3(1,1)+InvCov2)*(InvCovm(1,1)-InvCovm2(1,1)+InvCov1);
cmiv = 0.5 * (trace(InvC*Covm)+log(C0)-n);
end
% cmiv=abs(cmiv);
if cmiv==inf
cmiv=0;
end
end