forked from aimacode/aima-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgames4e.py
635 lines (515 loc) · 21.9 KB
/
games4e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
"""Games or Adversarial Search (Chapter 5)"""
import copy
import itertools
import random
from collections import namedtuple
import numpy as np
from utils4e import vector_add, MCT_Node, ucb
GameState = namedtuple('GameState', 'to_move, utility, board, moves')
StochasticGameState = namedtuple('StochasticGameState', 'to_move, utility, board, moves, chance')
# ______________________________________________________________________________
# MinMax Search
def minmax_decision(state, game):
"""Given a state in a game, calculate the best move by searching
forward all the way to the terminal states. [Figure 5.3]"""
player = game.to_move(state)
def max_value(state):
if game.terminal_test(state):
return game.utility(state, player)
v = -np.inf
for a in game.actions(state):
v = max(v, min_value(game.result(state, a)))
return v
def min_value(state):
if game.terminal_test(state):
return game.utility(state, player)
v = np.inf
for a in game.actions(state):
v = min(v, max_value(game.result(state, a)))
return v
# Body of minmax_decision:
return max(game.actions(state), key=lambda a: min_value(game.result(state, a)))
# ______________________________________________________________________________
def expect_minmax(state, game):
"""
[Figure 5.11]
Return the best move for a player after dice are thrown. The game tree
includes chance nodes along with min and max nodes.
"""
player = game.to_move(state)
def max_value(state):
v = -np.inf
for a in game.actions(state):
v = max(v, chance_node(state, a))
return v
def min_value(state):
v = np.inf
for a in game.actions(state):
v = min(v, chance_node(state, a))
return v
def chance_node(state, action):
res_state = game.result(state, action)
if game.terminal_test(res_state):
return game.utility(res_state, player)
sum_chances = 0
num_chances = len(game.chances(res_state))
for chance in game.chances(res_state):
res_state = game.outcome(res_state, chance)
util = 0
if res_state.to_move == player:
util = max_value(res_state)
else:
util = min_value(res_state)
sum_chances += util * game.probability(chance)
return sum_chances / num_chances
# Body of expect_min_max:
return max(game.actions(state), key=lambda a: chance_node(state, a), default=None)
def alpha_beta_search(state, game):
"""Search game to determine best action; use alpha-beta pruning.
As in [Figure 5.7], this version searches all the way to the leaves."""
player = game.to_move(state)
# Functions used by alpha_beta
def max_value(state, alpha, beta):
if game.terminal_test(state):
return game.utility(state, player)
v = -np.inf
for a in game.actions(state):
v = max(v, min_value(game.result(state, a), alpha, beta))
if v >= beta:
return v
alpha = max(alpha, v)
return v
def min_value(state, alpha, beta):
if game.terminal_test(state):
return game.utility(state, player)
v = np.inf
for a in game.actions(state):
v = min(v, max_value(game.result(state, a), alpha, beta))
if v <= alpha:
return v
beta = min(beta, v)
return v
# Body of alpha_beta_search:
best_score = -np.inf
beta = np.inf
best_action = None
for a in game.actions(state):
v = min_value(game.result(state, a), best_score, beta)
if v > best_score:
best_score = v
best_action = a
return best_action
def alpha_beta_cutoff_search(state, game, d=4, cutoff_test=None, eval_fn=None):
"""Search game to determine best action; use alpha-beta pruning.
This version cuts off search and uses an evaluation function."""
player = game.to_move(state)
# Functions used by alpha_beta
def max_value(state, alpha, beta, depth):
if cutoff_test(state, depth):
return eval_fn(state)
v = -np.inf
for a in game.actions(state):
v = max(v, min_value(game.result(state, a), alpha, beta, depth + 1))
if v >= beta:
return v
alpha = max(alpha, v)
return v
def min_value(state, alpha, beta, depth):
if cutoff_test(state, depth):
return eval_fn(state)
v = np.inf
for a in game.actions(state):
v = min(v, max_value(game.result(state, a), alpha, beta, depth + 1))
if v <= alpha:
return v
beta = min(beta, v)
return v
# Body of alpha_beta_cutoff_search starts here:
# The default test cuts off at depth d or at a terminal state
cutoff_test = (cutoff_test or (lambda state, depth: depth > d or game.terminal_test(state)))
eval_fn = eval_fn or (lambda state: game.utility(state, player))
best_score = -np.inf
beta = np.inf
best_action = None
for a in game.actions(state):
v = min_value(game.result(state, a), best_score, beta, 1)
if v > best_score:
best_score = v
best_action = a
return best_action
# ______________________________________________________________________________
# Monte Carlo Tree Search
def monte_carlo_tree_search(state, game, N=1000):
def select(n):
"""select a leaf node in the tree"""
if n.children:
return select(max(n.children.keys(), key=ucb))
else:
return n
def expand(n):
"""expand the leaf node by adding all its children states"""
if not n.children and not game.terminal_test(n.state):
n.children = {MCT_Node(state=game.result(n.state, action), parent=n): action
for action in game.actions(n.state)}
return select(n)
def simulate(game, state):
"""simulate the utility of current state by random picking a step"""
player = game.to_move(state)
while not game.terminal_test(state):
action = random.choice(list(game.actions(state)))
state = game.result(state, action)
v = game.utility(state, player)
return -v
def backprop(n, utility):
"""passing the utility back to all parent nodes"""
if utility > 0:
n.U += utility
# if utility == 0:
# n.U += 0.5
n.N += 1
if n.parent:
backprop(n.parent, -utility)
root = MCT_Node(state=state)
for _ in range(N):
leaf = select(root)
child = expand(leaf)
result = simulate(game, child.state)
backprop(child, result)
max_state = max(root.children, key=lambda p: p.N)
return root.children.get(max_state)
# ______________________________________________________________________________
# Players for Games
def query_player(game, state):
"""Make a move by querying standard input."""
print("current state:")
game.display(state)
print("available moves: {}".format(game.actions(state)))
print("")
move = None
if game.actions(state):
move_string = input('Your move? ')
try:
move = eval(move_string)
except NameError:
move = move_string
else:
print('no legal moves: passing turn to next player')
return move
def random_player(game, state):
"""A player that chooses a legal move at random."""
return random.choice(game.actions(state)) if game.actions(state) else None
def alpha_beta_player(game, state):
return alpha_beta_search(state, game)
def expect_min_max_player(game, state):
return expect_minmax(state, game)
def mcts_player(game, state):
return monte_carlo_tree_search(state, game)
# ______________________________________________________________________________
# Some Sample Games
class Game:
"""A game is similar to a problem, but it has a utility for each
state and a terminal test instead of a path cost and a goal
test. To create a game, subclass this class and implement actions,
result, utility, and terminal_test. You may override display and
successors or you can inherit their default methods. You will also
need to set the .initial attribute to the initial state; this can
be done in the constructor."""
def actions(self, state):
"""Return a list of the allowable moves at this point."""
raise NotImplementedError
def result(self, state, move):
"""Return the state that results from making a move from a state."""
raise NotImplementedError
def utility(self, state, player):
"""Return the value of this final state to player."""
raise NotImplementedError
def terminal_test(self, state):
"""Return True if this is a final state for the game."""
return not self.actions(state)
def to_move(self, state):
"""Return the player whose move it is in this state."""
return state.to_move
def display(self, state):
"""Print or otherwise display the state."""
print(state)
def __repr__(self):
return '<{}>'.format(self.__class__.__name__)
def play_game(self, *players):
"""Play an n-person, move-alternating game."""
state = self.initial
while True:
for player in players:
move = player(self, state)
state = self.result(state, move)
if self.terminal_test(state):
self.display(state)
return self.utility(state, self.to_move(self.initial))
class StochasticGame(Game):
"""A stochastic game includes uncertain events which influence
the moves of players at each state. To create a stochastic game, subclass
this class and implement chances and outcome along with the other
unimplemented game class methods."""
def chances(self, state):
"""Return a list of all possible uncertain events at a state."""
raise NotImplementedError
def outcome(self, state, chance):
"""Return the state which is the outcome of a chance trial."""
raise NotImplementedError
def probability(self, chance):
"""Return the probability of occurrence of a chance."""
raise NotImplementedError
def play_game(self, *players):
"""Play an n-person, move-alternating stochastic game."""
state = self.initial
while True:
for player in players:
chance = random.choice(self.chances(state))
state = self.outcome(state, chance)
move = player(self, state)
state = self.result(state, move)
if self.terminal_test(state):
self.display(state)
return self.utility(state, self.to_move(self.initial))
class Fig52Game(Game):
"""The game represented in [Figure 5.2]. Serves as a simple test case."""
succs = dict(A=dict(a1='B', a2='C', a3='D'),
B=dict(b1='B1', b2='B2', b3='B3'),
C=dict(c1='C1', c2='C2', c3='C3'),
D=dict(d1='D1', d2='D2', d3='D3'))
utils = dict(B1=3, B2=12, B3=8, C1=2, C2=4, C3=6, D1=14, D2=5, D3=2)
initial = 'A'
def actions(self, state):
return list(self.succs.get(state, {}).keys())
def result(self, state, move):
return self.succs[state][move]
def utility(self, state, player):
if player == 'MAX':
return self.utils[state]
else:
return -self.utils[state]
def terminal_test(self, state):
return state not in ('A', 'B', 'C', 'D')
def to_move(self, state):
return 'MIN' if state in 'BCD' else 'MAX'
class Fig52Extended(Game):
"""Similar to Fig52Game but bigger. Useful for visualisation"""
succs = {i: dict(l=i * 3 + 1, m=i * 3 + 2, r=i * 3 + 3) for i in range(13)}
utils = dict()
def actions(self, state):
return sorted(list(self.succs.get(state, {}).keys()))
def result(self, state, move):
return self.succs[state][move]
def utility(self, state, player):
if player == 'MAX':
return self.utils[state]
else:
return -self.utils[state]
def terminal_test(self, state):
return state not in range(13)
def to_move(self, state):
return 'MIN' if state in {1, 2, 3} else 'MAX'
class TicTacToe(Game):
"""Play TicTacToe on an h x v board, with Max (first player) playing 'X'.
A state has the player to move, a cached utility, a list of moves in
the form of a list of (x, y) positions, and a board, in the form of
a dict of {(x, y): Player} entries, where Player is 'X' or 'O'."""
def __init__(self, h=3, v=3, k=3):
self.h = h
self.v = v
self.k = k
moves = [(x, y) for x in range(1, h + 1)
for y in range(1, v + 1)]
self.initial = GameState(to_move='X', utility=0, board={}, moves=moves)
def actions(self, state):
"""Legal moves are any square not yet taken."""
return state.moves
def result(self, state, move):
if move not in state.moves:
return state # Illegal move has no effect
board = state.board.copy()
board[move] = state.to_move
moves = list(state.moves)
moves.remove(move)
return GameState(to_move=('O' if state.to_move == 'X' else 'X'),
utility=self.compute_utility(board, move, state.to_move),
board=board, moves=moves)
def utility(self, state, player):
"""Return the value to player; 1 for win, -1 for loss, 0 otherwise."""
return state.utility if player == 'X' else -state.utility
def terminal_test(self, state):
"""A state is terminal if it is won or there are no empty squares."""
return state.utility != 0 or len(state.moves) == 0
def display(self, state):
board = state.board
for x in range(1, self.h + 1):
for y in range(1, self.v + 1):
print(board.get((x, y), '.'), end=' ')
print()
def compute_utility(self, board, move, player):
"""If 'X' wins with this move, return 1; if 'O' wins return -1; else return 0."""
if (self.k_in_row(board, move, player, (0, 1)) or
self.k_in_row(board, move, player, (1, 0)) or
self.k_in_row(board, move, player, (1, -1)) or
self.k_in_row(board, move, player, (1, 1))):
return +1 if player == 'X' else -1
else:
return 0
def k_in_row(self, board, move, player, delta_x_y):
"""Return true if there is a line through move on board for player."""
(delta_x, delta_y) = delta_x_y
x, y = move
n = 0 # n is number of moves in row
while board.get((x, y)) == player:
n += 1
x, y = x + delta_x, y + delta_y
x, y = move
while board.get((x, y)) == player:
n += 1
x, y = x - delta_x, y - delta_y
n -= 1 # Because we counted move itself twice
return n >= self.k
class ConnectFour(TicTacToe):
"""A TicTacToe-like game in which you can only make a move on the bottom
row, or in a square directly above an occupied square. Traditionally
played on a 7x6 board and requiring 4 in a row."""
def __init__(self, h=7, v=6, k=4):
TicTacToe.__init__(self, h, v, k)
def actions(self, state):
return [(x, y) for (x, y) in state.moves
if y == 1 or (x, y - 1) in state.board]
class Backgammon(StochasticGame):
"""A two player game where the goal of each player is to move all the
checkers off the board. The moves for each state are determined by
rolling a pair of dice."""
def __init__(self):
"""Initial state of the game"""
point = {'W': 0, 'B': 0}
board = [point.copy() for index in range(24)]
board[0]['B'] = board[23]['W'] = 2
board[5]['W'] = board[18]['B'] = 5
board[7]['W'] = board[16]['B'] = 3
board[11]['B'] = board[12]['W'] = 5
self.allow_bear_off = {'W': False, 'B': False}
self.direction = {'W': -1, 'B': 1}
self.initial = StochasticGameState(to_move='W',
utility=0,
board=board,
moves=self.get_all_moves(board, 'W'), chance=None)
def actions(self, state):
"""Return a list of legal moves for a state."""
player = state.to_move
moves = state.moves
if len(moves) == 1 and len(moves[0]) == 1:
return moves
legal_moves = []
for move in moves:
board = copy.deepcopy(state.board)
if self.is_legal_move(board, move, state.chance, player):
legal_moves.append(move)
return legal_moves
def result(self, state, move):
board = copy.deepcopy(state.board)
player = state.to_move
self.move_checker(board, move[0], state.chance[0], player)
if len(move) == 2:
self.move_checker(board, move[1], state.chance[1], player)
to_move = ('W' if player == 'B' else 'B')
return StochasticGameState(to_move=to_move,
utility=self.compute_utility(board, move, player),
board=board,
moves=self.get_all_moves(board, to_move), chance=None)
def utility(self, state, player):
"""Return the value to player; 1 for win, -1 for loss, 0 otherwise."""
return state.utility if player == 'W' else -state.utility
def terminal_test(self, state):
"""A state is terminal if one player wins."""
return state.utility != 0
def get_all_moves(self, board, player):
"""All possible moves for a player i.e. all possible ways of
choosing two checkers of a player from the board for a move
at a given state."""
all_points = board
taken_points = [index for index, point in enumerate(all_points)
if point[player] > 0]
if self.checkers_at_home(board, player) == 1:
return [(taken_points[0],)]
moves = list(itertools.permutations(taken_points, 2))
moves = moves + [(index, index) for index, point in enumerate(all_points)
if point[player] >= 2]
return moves
def display(self, state):
"""Display state of the game."""
board = state.board
player = state.to_move
print("current state : ")
for index, point in enumerate(board):
print("point : ", index, " W : ", point['W'], " B : ", point['B'])
print("to play : ", player)
def compute_utility(self, board, move, player):
"""If 'W' wins with this move, return 1; if 'B' wins return -1; else return 0."""
util = {'W': 1, 'B': -1}
for idx in range(0, 24):
if board[idx][player] > 0:
return 0
return util[player]
def checkers_at_home(self, board, player):
"""Return the no. of checkers at home for a player."""
sum_range = range(0, 7) if player == 'W' else range(17, 24)
count = 0
for idx in sum_range:
count = count + board[idx][player]
return count
def is_legal_move(self, board, start, steps, player):
"""Move is a tuple which contains starting points of checkers to be
moved during a player's turn. An on-board move is legal if both the destinations
are open. A bear-off move is the one where a checker is moved off-board.
It is legal only after a player has moved all his checkers to his home."""
dest1, dest2 = vector_add(start, steps)
dest_range = range(0, 24)
move1_legal = move2_legal = False
if dest1 in dest_range:
if self.is_point_open(player, board[dest1]):
self.move_checker(board, start[0], steps[0], player)
move1_legal = True
else:
if self.allow_bear_off[player]:
self.move_checker(board, start[0], steps[0], player)
move1_legal = True
if not move1_legal:
return False
if dest2 in dest_range:
if self.is_point_open(player, board[dest2]):
move2_legal = True
else:
if self.allow_bear_off[player]:
move2_legal = True
return move1_legal and move2_legal
def move_checker(self, board, start, steps, player):
"""Move a checker from starting point by a given number of steps"""
dest = start + steps
dest_range = range(0, 24)
board[start][player] -= 1
if dest in dest_range:
board[dest][player] += 1
if self.checkers_at_home(board, player) == 15:
self.allow_bear_off[player] = True
def is_point_open(self, player, point):
"""A point is open for a player if the no. of opponent's
checkers already present on it is 0 or 1. A player can
move a checker to a point only if it is open."""
opponent = 'B' if player == 'W' else 'W'
return point[opponent] <= 1
def chances(self, state):
"""Return a list of all possible dice rolls at a state."""
dice_rolls = list(itertools.combinations_with_replacement([1, 2, 3, 4, 5, 6], 2))
return dice_rolls
def outcome(self, state, chance):
"""Return the state which is the outcome of a dice roll."""
dice = tuple(map((self.direction[state.to_move]).__mul__, chance))
return StochasticGameState(to_move=state.to_move,
utility=state.utility,
board=state.board,
moves=state.moves, chance=dice)
def probability(self, chance):
"""Return the probability of occurrence of a dice roll."""
return 1 / 36 if chance[0] == chance[1] else 1 / 18