forked from aimacode/aima-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning.py
1253 lines (1007 loc) · 44.6 KB
/
learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Learning from examples (Chapters 18)"""
import copy
from collections import defaultdict
from statistics import stdev
from qpsolvers import solve_qp
from probabilistic_learning import NaiveBayesLearner
from utils import *
class DataSet:
"""
A data set for a machine learning problem. It has the following fields:
d.examples A list of examples. Each one is a list of attribute values.
d.attrs A list of integers to index into an example, so example[attr]
gives a value. Normally the same as range(len(d.examples[0])).
d.attr_names Optional list of mnemonic names for corresponding attrs.
d.target The attribute that a learning algorithm will try to predict.
By default the final attribute.
d.inputs The list of attrs without the target.
d.values A list of lists: each sublist is the set of possible
values for the corresponding attribute. If initially None,
it is computed from the known examples by self.set_problem.
If not None, an erroneous value raises ValueError.
d.distance A function from a pair of examples to a non-negative number.
Should be symmetric, etc. Defaults to mean_boolean_error
since that can handle any field types.
d.name Name of the data set (for output display only).
d.source URL or other source where the data came from.
d.exclude A list of attribute indexes to exclude from d.inputs. Elements
of this list can either be integers (attrs) or attr_names.
Normally, you call the constructor and you're done; then you just
access fields like d.examples and d.target and d.inputs.
"""
def __init__(self, examples=None, attrs=None, attr_names=None, target=-1, inputs=None,
values=None, distance=mean_boolean_error, name='', source='', exclude=()):
"""
Accepts any of DataSet's fields. Examples can also be a
string or file from which to parse examples using parse_csv.
Optional parameter: exclude, as documented in .set_problem().
>>> DataSet(examples='1, 2, 3')
<DataSet(): 1 examples, 3 attributes>
"""
self.name = name
self.source = source
self.values = values
self.distance = distance
self.got_values_flag = bool(values)
# initialize .examples from string or list or data directory
if isinstance(examples, str):
self.examples = parse_csv(examples)
elif examples is None:
self.examples = parse_csv(open_data(name + '.csv').read())
else:
self.examples = examples
# attrs are the indices of examples, unless otherwise stated.
if self.examples is not None and attrs is None:
attrs = list(range(len(self.examples[0])))
self.attrs = attrs
# initialize .attr_names from string, list, or by default
if isinstance(attr_names, str):
self.attr_names = attr_names.split()
else:
self.attr_names = attr_names or attrs
self.set_problem(target, inputs=inputs, exclude=exclude)
def set_problem(self, target, inputs=None, exclude=()):
"""
Set (or change) the target and/or inputs.
This way, one DataSet can be used multiple ways. inputs, if specified,
is a list of attributes, or specify exclude as a list of attributes
to not use in inputs. Attributes can be -n .. n, or an attr_name.
Also computes the list of possible values, if that wasn't done yet.
"""
self.target = self.attr_num(target)
exclude = list(map(self.attr_num, exclude))
if inputs:
self.inputs = remove_all(self.target, inputs)
else:
self.inputs = [a for a in self.attrs if a != self.target and a not in exclude]
if not self.values:
self.update_values()
self.check_me()
def check_me(self):
"""Check that my fields make sense."""
assert len(self.attr_names) == len(self.attrs)
assert self.target in self.attrs
assert self.target not in self.inputs
assert set(self.inputs).issubset(set(self.attrs))
if self.got_values_flag:
# only check if values are provided while initializing DataSet
list(map(self.check_example, self.examples))
def add_example(self, example):
"""Add an example to the list of examples, checking it first."""
self.check_example(example)
self.examples.append(example)
def check_example(self, example):
"""Raise ValueError if example has any invalid values."""
if self.values:
for a in self.attrs:
if example[a] not in self.values[a]:
raise ValueError('Bad value {} for attribute {} in {}'
.format(example[a], self.attr_names[a], example))
def attr_num(self, attr):
"""Returns the number used for attr, which can be a name, or -n .. n-1."""
if isinstance(attr, str):
return self.attr_names.index(attr)
elif attr < 0:
return len(self.attrs) + attr
else:
return attr
def update_values(self):
self.values = list(map(unique, zip(*self.examples)))
def sanitize(self, example):
"""Return a copy of example, with non-input attributes replaced by None."""
return [attr_i if i in self.inputs else None for i, attr_i in enumerate(example)]
def classes_to_numbers(self, classes=None):
"""Converts class names to numbers."""
if not classes:
# if classes were not given, extract them from values
classes = sorted(self.values[self.target])
for item in self.examples:
item[self.target] = classes.index(item[self.target])
def remove_examples(self, value=''):
"""Remove examples that contain given value."""
self.examples = [x for x in self.examples if value not in x]
self.update_values()
def split_values_by_classes(self):
"""Split values into buckets according to their class."""
buckets = defaultdict(lambda: [])
target_names = self.values[self.target]
for v in self.examples:
item = [a for a in v if a not in target_names] # remove target from item
buckets[v[self.target]].append(item) # add item to bucket of its class
return buckets
def find_means_and_deviations(self):
"""
Finds the means and standard deviations of self.dataset.
means : a dictionary for each class/target. Holds a list of the means
of the features for the class.
deviations: a dictionary for each class/target. Holds a list of the sample
standard deviations of the features for the class.
"""
target_names = self.values[self.target]
feature_numbers = len(self.inputs)
item_buckets = self.split_values_by_classes()
means = defaultdict(lambda: [0] * feature_numbers)
deviations = defaultdict(lambda: [0] * feature_numbers)
for t in target_names:
# find all the item feature values for item in class t
features = [[] for _ in range(feature_numbers)]
for item in item_buckets[t]:
for i in range(feature_numbers):
features[i].append(item[i])
# calculate means and deviations fo the class
for i in range(feature_numbers):
means[t][i] = mean(features[i])
deviations[t][i] = stdev(features[i])
return means, deviations
def __repr__(self):
return '<DataSet({}): {:d} examples, {:d} attributes>'.format(self.name, len(self.examples), len(self.attrs))
def parse_csv(input, delim=','):
r"""
Input is a string consisting of lines, each line has comma-delimited
fields. Convert this into a list of lists. Blank lines are skipped.
Fields that look like numbers are converted to numbers.
The delim defaults to ',' but '\t' and None are also reasonable values.
>>> parse_csv('1, 2, 3 \n 0, 2, na')
[[1, 2, 3], [0, 2, 'na']]
"""
lines = [line for line in input.splitlines() if line.strip()]
return [list(map(num_or_str, line.split(delim))) for line in lines]
def err_ratio(predict, dataset, examples=None):
"""
Return the proportion of the examples that are NOT correctly predicted.
verbose - 0: No output; 1: Output wrong; 2 (or greater): Output correct
"""
examples = examples or dataset.examples
if len(examples) == 0:
return 0.0
right = 0
for example in examples:
desired = example[dataset.target]
output = predict(dataset.sanitize(example))
if output == desired:
right += 1
return 1 - (right / len(examples))
def grade_learner(predict, tests):
"""
Grades the given learner based on how many tests it passes.
tests is a list with each element in the form: (values, output).
"""
return mean(int(predict(X) == y) for X, y in tests)
def train_test_split(dataset, start=None, end=None, test_split=None):
"""
If you are giving 'start' and 'end' as parameters,
then it will return the testing set from index 'start' to 'end'
and the rest for training.
If you give 'test_split' as a parameter then it will return
test_split * 100% as the testing set and the rest as
training set.
"""
examples = dataset.examples
if test_split is None:
train = examples[:start] + examples[end:]
val = examples[start:end]
else:
total_size = len(examples)
val_size = int(total_size * test_split)
train_size = total_size - val_size
train = examples[:train_size]
val = examples[train_size:total_size]
return train, val
def cross_validation_wrapper(learner, dataset, k=10, trials=1):
"""
[Figure 18.8]
Return the optimal value of size having minimum error on validation set.
errT: a training error array, indexed by size
errV: a validation error array, indexed by size
"""
errs = []
size = 1
while True:
errT, errV = cross_validation(learner, dataset, size, k, trials)
# check for convergence provided err_val is not empty
if errT and not np.isclose(errT[-1], errT, rtol=1e-6):
best_size = 0
min_val = np.inf
i = 0
while i < size:
if errs[i] < min_val:
min_val = errs[i]
best_size = i
i += 1
return learner(dataset, best_size)
errs.append(errV)
size += 1
def cross_validation(learner, dataset, size=None, k=10, trials=1):
"""
Do k-fold cross_validate and return their mean.
That is, keep out 1/k of the examples for testing on each of k runs.
Shuffle the examples first; if trials > 1, average over several shuffles.
Returns Training error, Validation error
"""
k = k or len(dataset.examples)
if trials > 1:
trial_errT = 0
trial_errV = 0
for t in range(trials):
errT, errV = cross_validation(learner, dataset, size, k, trials)
trial_errT += errT
trial_errV += errV
return trial_errT / trials, trial_errV / trials
else:
fold_errT = 0
fold_errV = 0
n = len(dataset.examples)
examples = dataset.examples
random.shuffle(dataset.examples)
for fold in range(k):
train_data, val_data = train_test_split(dataset, fold * (n // k), (fold + 1) * (n // k))
dataset.examples = train_data
h = learner(dataset, size)
fold_errT += err_ratio(h, dataset, train_data)
fold_errV += err_ratio(h, dataset, val_data)
# reverting back to original once test is completed
dataset.examples = examples
return fold_errT / k, fold_errV / k
def leave_one_out(learner, dataset, size=None):
"""Leave one out cross-validation over the dataset."""
return cross_validation(learner, dataset, size, len(dataset.examples))
def learning_curve(learner, dataset, trials=10, sizes=None):
if sizes is None:
sizes = list(range(2, len(dataset.examples) - trials, 2))
def score(learner, size):
random.shuffle(dataset.examples)
return cross_validation(learner, dataset, size, trials)
return [(size, mean([score(learner, size) for _ in range(trials)])) for size in sizes]
def PluralityLearner(dataset):
"""
A very dumb algorithm: always pick the result that was most popular
in the training data. Makes a baseline for comparison.
"""
most_popular = mode([e[dataset.target] for e in dataset.examples])
def predict(example):
"""Always return same result: the most popular from the training set."""
return most_popular
return predict
class DecisionFork:
"""
A fork of a decision tree holds an attribute to test, and a dict
of branches, one for each of the attribute's values.
"""
def __init__(self, attr, attr_name=None, default_child=None, branches=None):
"""Initialize by saying what attribute this node tests."""
self.attr = attr
self.attr_name = attr_name or attr
self.default_child = default_child
self.branches = branches or {}
def __call__(self, example):
"""Given an example, classify it using the attribute and the branches."""
attr_val = example[self.attr]
if attr_val in self.branches:
return self.branches[attr_val](example)
else:
# return default class when attribute is unknown
return self.default_child(example)
def add(self, val, subtree):
"""Add a branch. If self.attr = val, go to the given subtree."""
self.branches[val] = subtree
def display(self, indent=0):
name = self.attr_name
print('Test', name)
for (val, subtree) in self.branches.items():
print(' ' * 4 * indent, name, '=', val, '==>', end=' ')
subtree.display(indent + 1)
def __repr__(self):
return 'DecisionFork({0!r}, {1!r}, {2!r})'.format(self.attr, self.attr_name, self.branches)
class DecisionLeaf:
"""A leaf of a decision tree holds just a result."""
def __init__(self, result):
self.result = result
def __call__(self, example):
return self.result
def display(self):
print('RESULT =', self.result)
def __repr__(self):
return repr(self.result)
def DecisionTreeLearner(dataset):
"""[Figure 18.5]"""
target, values = dataset.target, dataset.values
def decision_tree_learning(examples, attrs, parent_examples=()):
if len(examples) == 0:
return plurality_value(parent_examples)
if all_same_class(examples):
return DecisionLeaf(examples[0][target])
if len(attrs) == 0:
return plurality_value(examples)
A = choose_attribute(attrs, examples)
tree = DecisionFork(A, dataset.attr_names[A], plurality_value(examples))
for (v_k, exs) in split_by(A, examples):
subtree = decision_tree_learning(exs, remove_all(A, attrs), examples)
tree.add(v_k, subtree)
return tree
def plurality_value(examples):
"""
Return the most popular target value for this set of examples.
(If target is binary, this is the majority; otherwise plurality).
"""
popular = argmax_random_tie(values[target], key=lambda v: count(target, v, examples))
return DecisionLeaf(popular)
def count(attr, val, examples):
"""Count the number of examples that have example[attr] = val."""
return sum(e[attr] == val for e in examples)
def all_same_class(examples):
"""Are all these examples in the same target class?"""
class0 = examples[0][target]
return all(e[target] == class0 for e in examples)
def choose_attribute(attrs, examples):
"""Choose the attribute with the highest information gain."""
return argmax_random_tie(attrs, key=lambda a: information_gain(a, examples))
def information_gain(attr, examples):
"""Return the expected reduction in entropy from splitting by attr."""
def I(examples):
return information_content([count(target, v, examples) for v in values[target]])
n = len(examples)
remainder = sum((len(examples_i) / n) * I(examples_i) for (v, examples_i) in split_by(attr, examples))
return I(examples) - remainder
def split_by(attr, examples):
"""Return a list of (val, examples) pairs for each val of attr."""
return [(v, [e for e in examples if e[attr] == v]) for v in values[attr]]
return decision_tree_learning(dataset.examples, dataset.inputs)
def information_content(values):
"""Number of bits to represent the probability distribution in values."""
probabilities = normalize(remove_all(0, values))
return sum(-p * np.log2(p) for p in probabilities)
def DecisionListLearner(dataset):
"""
[Figure 18.11]
A decision list implemented as a list of (test, value) pairs.
"""
def decision_list_learning(examples):
if not examples:
return [(True, False)]
t, o, examples_t = find_examples(examples)
if not t:
raise Exception
return [(t, o)] + decision_list_learning(examples - examples_t)
def find_examples(examples):
"""
Find a set of examples that all have the same outcome under
some test. Return a tuple of the test, outcome, and examples.
"""
raise NotImplementedError
def passes(example, test):
"""Does the example pass the test?"""
raise NotImplementedError
def predict(example):
"""Predict the outcome for the first passing test."""
for test, outcome in predict.decision_list:
if passes(example, test):
return outcome
predict.decision_list = decision_list_learning(set(dataset.examples))
return predict
def NearestNeighborLearner(dataset, k=1):
"""k-NearestNeighbor: the k nearest neighbors vote."""
def predict(example):
"""Find the k closest items, and have them vote for the best."""
best = heapq.nsmallest(k, ((dataset.distance(e, example), e) for e in dataset.examples))
return mode(e[dataset.target] for (d, e) in best)
return predict
def LinearLearner(dataset, learning_rate=0.01, epochs=100):
"""
[Section 18.6.3]
Linear classifier with hard threshold.
"""
idx_i = dataset.inputs
idx_t = dataset.target
examples = dataset.examples
num_examples = len(examples)
# X transpose
X_col = [dataset.values[i] for i in idx_i] # vertical columns of X
# add dummy
ones = [1 for _ in range(len(examples))]
X_col = [ones] + X_col
# initialize random weights
num_weights = len(idx_i) + 1
w = random_weights(min_value=-0.5, max_value=0.5, num_weights=num_weights)
for epoch in range(epochs):
err = []
# pass over all examples
for example in examples:
x = [1] + example
y = np.dot(w, x)
t = example[idx_t]
err.append(t - y)
# update weights
for i in range(len(w)):
w[i] = w[i] + learning_rate * (np.dot(err, X_col[i]) / num_examples)
def predict(example):
x = [1] + example
return np.dot(w, x)
return predict
def LogisticLinearLeaner(dataset, learning_rate=0.01, epochs=100):
"""
[Section 18.6.4]
Linear classifier with logistic regression.
"""
idx_i = dataset.inputs
idx_t = dataset.target
examples = dataset.examples
num_examples = len(examples)
# X transpose
X_col = [dataset.values[i] for i in idx_i] # vertical columns of X
# add dummy
ones = [1 for _ in range(len(examples))]
X_col = [ones] + X_col
# initialize random weights
num_weights = len(idx_i) + 1
w = random_weights(min_value=-0.5, max_value=0.5, num_weights=num_weights)
for epoch in range(epochs):
err = []
h = []
# pass over all examples
for example in examples:
x = [1] + example
y = sigmoid(np.dot(w, x))
h.append(sigmoid_derivative(y))
t = example[idx_t]
err.append(t - y)
# update weights
for i in range(len(w)):
buffer = [x * y for x, y in zip(err, h)]
w[i] = w[i] + learning_rate * (np.dot(buffer, X_col[i]) / num_examples)
def predict(example):
x = [1] + example
return sigmoid(np.dot(w, x))
return predict
def NeuralNetLearner(dataset, hidden_layer_sizes=None, learning_rate=0.01, epochs=100, activation=sigmoid):
"""
Layered feed-forward network.
hidden_layer_sizes: List of number of hidden units per hidden layer
learning_rate: Learning rate of gradient descent
epochs: Number of passes over the dataset
"""
if hidden_layer_sizes is None:
hidden_layer_sizes = [3]
i_units = len(dataset.inputs)
o_units = len(dataset.values[dataset.target])
# construct a network
raw_net = network(i_units, hidden_layer_sizes, o_units, activation)
learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epochs, activation)
def predict(example):
# input nodes
i_nodes = learned_net[0]
# activate input layer
for v, n in zip(example, i_nodes):
n.value = v
# forward pass
for layer in learned_net[1:]:
for node in layer:
inc = [n.value for n in node.inputs]
in_val = dot_product(inc, node.weights)
node.value = node.activation(in_val)
# hypothesis
o_nodes = learned_net[-1]
prediction = find_max_node(o_nodes)
return prediction
return predict
def BackPropagationLearner(dataset, net, learning_rate, epochs, activation=sigmoid):
"""
[Figure 18.23]
The back-propagation algorithm for multilayer networks.
"""
# initialise weights
for layer in net:
for node in layer:
node.weights = random_weights(min_value=-0.5, max_value=0.5, num_weights=len(node.weights))
examples = dataset.examples
# As of now dataset.target gives an int instead of list,
# Changing dataset class will have effect on all the learners.
# Will be taken care of later.
o_nodes = net[-1]
i_nodes = net[0]
o_units = len(o_nodes)
idx_t = dataset.target
idx_i = dataset.inputs
n_layers = len(net)
inputs, targets = init_examples(examples, idx_i, idx_t, o_units)
for epoch in range(epochs):
# iterate over each example
for e in range(len(examples)):
i_val = inputs[e]
t_val = targets[e]
# activate input layer
for v, n in zip(i_val, i_nodes):
n.value = v
# forward pass
for layer in net[1:]:
for node in layer:
inc = [n.value for n in node.inputs]
in_val = dot_product(inc, node.weights)
node.value = node.activation(in_val)
# initialize delta
delta = [[] for _ in range(n_layers)]
# compute outer layer delta
# error for the MSE cost function
err = [t_val[i] - o_nodes[i].value for i in range(o_units)]
# calculate delta at output
if node.activation == sigmoid:
delta[-1] = [sigmoid_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
elif node.activation == relu:
delta[-1] = [relu_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
elif node.activation == tanh:
delta[-1] = [tanh_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
elif node.activation == elu:
delta[-1] = [elu_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
elif node.activation == leaky_relu:
delta[-1] = [leaky_relu_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
else:
return ValueError("Activation function unknown.")
# backward pass
h_layers = n_layers - 2
for i in range(h_layers, 0, -1):
layer = net[i]
h_units = len(layer)
nx_layer = net[i + 1]
# weights from each ith layer node to each i + 1th layer node
w = [[node.weights[k] for node in nx_layer] for k in range(h_units)]
if activation == sigmoid:
delta[i] = [sigmoid_derivative(layer[j].value) * dot_product(w[j], delta[i + 1])
for j in range(h_units)]
elif activation == relu:
delta[i] = [relu_derivative(layer[j].value) * dot_product(w[j], delta[i + 1])
for j in range(h_units)]
elif activation == tanh:
delta[i] = [tanh_derivative(layer[j].value) * dot_product(w[j], delta[i + 1])
for j in range(h_units)]
elif activation == elu:
delta[i] = [elu_derivative(layer[j].value) * dot_product(w[j], delta[i + 1])
for j in range(h_units)]
elif activation == leaky_relu:
delta[i] = [leaky_relu_derivative(layer[j].value) * dot_product(w[j], delta[i + 1])
for j in range(h_units)]
else:
return ValueError("Activation function unknown.")
# update weights
for i in range(1, n_layers):
layer = net[i]
inc = [node.value for node in net[i - 1]]
units = len(layer)
for j in range(units):
layer[j].weights = vector_add(layer[j].weights,
scalar_vector_product(learning_rate * delta[i][j], inc))
return net
def PerceptronLearner(dataset, learning_rate=0.01, epochs=100):
"""Logistic Regression, NO hidden layer"""
i_units = len(dataset.inputs)
o_units = len(dataset.values[dataset.target])
hidden_layer_sizes = []
raw_net = network(i_units, hidden_layer_sizes, o_units)
learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epochs)
def predict(example):
o_nodes = learned_net[1]
# forward pass
for node in o_nodes:
in_val = dot_product(example, node.weights)
node.value = node.activation(in_val)
# hypothesis
return find_max_node(o_nodes)
return predict
class NNUnit:
"""
Single Unit of Multiple Layer Neural Network
inputs: Incoming connections
weights: Weights to incoming connections
"""
def __init__(self, activation=sigmoid, weights=None, inputs=None):
self.weights = weights or []
self.inputs = inputs or []
self.value = None
self.activation = activation
def network(input_units, hidden_layer_sizes, output_units, activation=sigmoid):
"""
Create Directed Acyclic Network of given number layers.
hidden_layers_sizes : List number of neuron units in each hidden layer
excluding input and output layers
"""
layers_sizes = [input_units] + hidden_layer_sizes + [output_units]
net = [[NNUnit(activation) for _ in range(size)] for size in layers_sizes]
n_layers = len(net)
# make connection
for i in range(1, n_layers):
for n in net[i]:
for k in net[i - 1]:
n.inputs.append(k)
n.weights.append(0)
return net
def init_examples(examples, idx_i, idx_t, o_units):
inputs, targets = {}, {}
for i, e in enumerate(examples):
# input values of e
inputs[i] = [e[i] for i in idx_i]
if o_units > 1:
# one-hot representation of e's target
t = [0 for i in range(o_units)]
t[e[idx_t]] = 1
targets[i] = t
else:
# target value of e
targets[i] = [e[idx_t]]
return inputs, targets
def find_max_node(nodes):
return nodes.index(max(nodes, key=lambda node: node.value))
class SVC:
def __init__(self, kernel=linear_kernel, C=1.0, verbose=False):
self.kernel = kernel
self.C = C # hyper-parameter
self.sv_idx, self.sv, self.sv_y = np.zeros(0), np.zeros(0), np.zeros(0)
self.alphas = np.zeros(0)
self.w = None
self.b = 0.0 # intercept
self.verbose = verbose
def fit(self, X, y):
"""
Trains the model by solving a quadratic programming problem.
:param X: array of size [n_samples, n_features] holding the training samples
:param y: array of size [n_samples] holding the class labels
"""
# In QP formulation (dual): m variables, 2m+1 constraints (1 equation, 2m inequations)
self.solve_qp(X, y)
sv = self.alphas > 1e-5
self.sv_idx = np.arange(len(self.alphas))[sv]
self.sv, self.sv_y, self.alphas = X[sv], y[sv], self.alphas[sv]
if self.kernel == linear_kernel:
self.w = np.dot(self.alphas * self.sv_y, self.sv)
for n in range(len(self.alphas)):
self.b += self.sv_y[n]
self.b -= np.sum(self.alphas * self.sv_y * self.K[self.sv_idx[n], sv])
self.b /= len(self.alphas)
return self
def solve_qp(self, X, y):
"""
Solves a quadratic programming problem. In QP formulation (dual):
m variables, 2m+1 constraints (1 equation, 2m inequations).
:param X: array of size [n_samples, n_features] holding the training samples
:param y: array of size [n_samples] holding the class labels
"""
m = len(y) # m = n_samples
self.K = self.kernel(X) # gram matrix
P = self.K * np.outer(y, y)
q = -np.ones(m)
lb = np.zeros(m) # lower bounds
ub = np.ones(m) * self.C # upper bounds
A = y.astype(np.float64) # equality matrix
b = np.zeros(1) # equality vector
self.alphas = solve_qp(P, q, A=A, b=b, lb=lb, ub=ub, solver='cvxopt',
sym_proj=True, verbose=self.verbose)
def predict_score(self, X):
"""
Predicts the score for a given example.
"""
if self.w is None:
return np.dot(self.alphas * self.sv_y, self.kernel(self.sv, X)) + self.b
return np.dot(X, self.w) + self.b
def predict(self, X):
"""
Predicts the class of a given example.
"""
return np.sign(self.predict_score(X))
class SVR:
def __init__(self, kernel=linear_kernel, C=1.0, epsilon=0.1, verbose=False):
self.kernel = kernel
self.C = C # hyper-parameter
self.epsilon = epsilon # epsilon insensitive loss value
self.sv_idx, self.sv = np.zeros(0), np.zeros(0)
self.alphas_p, self.alphas_n = np.zeros(0), np.zeros(0)
self.w = None
self.b = 0.0 # intercept
self.verbose = verbose
def fit(self, X, y):
"""
Trains the model by solving a quadratic programming problem.
:param X: array of size [n_samples, n_features] holding the training samples
:param y: array of size [n_samples] holding the class labels
"""
# In QP formulation (dual): m variables, 2m+1 constraints (1 equation, 2m inequations)
self.solve_qp(X, y)
sv = np.logical_or(self.alphas_p > 1e-5, self.alphas_n > 1e-5)
self.sv_idx = np.arange(len(self.alphas_p))[sv]
self.sv, sv_y = X[sv], y[sv]
self.alphas_p, self.alphas_n = self.alphas_p[sv], self.alphas_n[sv]
if self.kernel == linear_kernel:
self.w = np.dot(self.alphas_p - self.alphas_n, self.sv)
for n in range(len(self.alphas_p)):
self.b += sv_y[n]
self.b -= np.sum((self.alphas_p - self.alphas_n) * self.K[self.sv_idx[n], sv])
self.b -= self.epsilon
self.b /= len(self.alphas_p)
return self
def solve_qp(self, X, y):
"""
Solves a quadratic programming problem. In QP formulation (dual):
m variables, 2m+1 constraints (1 equation, 2m inequations).
:param X: array of size [n_samples, n_features] holding the training samples
:param y: array of size [n_samples] holding the class labels
"""
#
m = len(y) # m = n_samples
self.K = self.kernel(X) # gram matrix
P = np.vstack((np.hstack((self.K, -self.K)), # alphas_p, alphas_n
np.hstack((-self.K, self.K)))) # alphas_n, alphas_p
q = np.hstack((-y, y)) + self.epsilon
lb = np.zeros(2 * m) # lower bounds
ub = np.ones(2 * m) * self.C # upper bounds
A = np.hstack((np.ones(m), -np.ones(m))) # equality matrix
b = np.zeros(1) # equality vector
alphas = solve_qp(P, q, A=A, b=b, lb=lb, ub=ub, solver='cvxopt',
sym_proj=True, verbose=self.verbose)
self.alphas_p = alphas[:m]
self.alphas_n = alphas[m:]
def predict(self, X):
if self.kernel != linear_kernel:
return np.dot(self.alphas_p - self.alphas_n, self.kernel(self.sv, X)) + self.b
return np.dot(X, self.w) + self.b
class MultiClassLearner:
def __init__(self, clf, decision_function='ovr'):
self.clf = clf
self.decision_function = decision_function
self.n_class, self.classifiers = 0, []
def fit(self, X, y):
"""
Trains n_class or n_class * (n_class - 1) / 2 classifiers
according to the training method, ovr or ovo respectively.
:param X: array of size [n_samples, n_features] holding the training samples
:param y: array of size [n_samples] holding the class labels
:return: array of classifiers
"""
labels = np.unique(y)
self.n_class = len(labels)
if self.decision_function == 'ovr': # one-vs-rest method
for label in labels:
y1 = np.array(y)
y1[y1 != label] = -1.0
y1[y1 == label] = 1.0
self.clf.fit(X, y1)
self.classifiers.append(copy.deepcopy(self.clf))
elif self.decision_function == 'ovo': # use one-vs-one method
n_labels = len(labels)
for i in range(n_labels):
for j in range(i + 1, n_labels):
neg_id, pos_id = y == labels[i], y == labels[j]
X1, y1 = np.r_[X[neg_id], X[pos_id]], np.r_[y[neg_id], y[pos_id]]
y1[y1 == labels[i]] = -1.0
y1[y1 == labels[j]] = 1.0
self.clf.fit(X1, y1)
self.classifiers.append(copy.deepcopy(self.clf))
else:
return ValueError("Decision function must be either 'ovr' or 'ovo'.")
return self
def predict(self, X):
"""
Predicts the class of a given example according to the training method.
"""
n_samples = len(X)
if self.decision_function == 'ovr': # one-vs-rest method
assert len(self.classifiers) == self.n_class
score = np.zeros((n_samples, self.n_class))
for i in range(self.n_class):
clf = self.classifiers[i]
score[:, i] = clf.predict_score(X)
return np.argmax(score, axis=1)
elif self.decision_function == 'ovo': # use one-vs-one method
assert len(self.classifiers) == self.n_class * (self.n_class - 1) / 2
vote = np.zeros((n_samples, self.n_class))
clf_id = 0
for i in range(self.n_class):
for j in range(i + 1, self.n_class):
res = self.classifiers[clf_id].predict(X)
vote[res < 0, i] += 1.0 # negative sample: class i
vote[res > 0, j] += 1.0 # positive sample: class j
clf_id += 1
return np.argmax(vote, axis=1)