forked from HappyGO2023/simple-chatpdf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqa.py
49 lines (42 loc) · 1.9 KB
/
qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain_community.embeddings import OllamaEmbeddings
from langchain.vectorstores import Chroma
from langchain.document_loaders import TextLoader
from langchain.chains.question_answering import load_qa_chain
from langchain.chat_models import ChatOpenAI
from langchain_community.llms import Ollama
from langchain.prompts import PromptTemplate
# os.environ["OPENAI_API_KEY"] = "{your-api-key}"
global retriever
def load_embedding():
#embedding = OpenAIEmbeddings()
embedding = OllamaEmbeddings()
global retriever
vectordb = Chroma(persist_directory='db', embedding_function=embedding)
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
def prompt(query):
prompt_template = """请注意:请谨慎评估query与提示的Context信息的相关性,只根据本段输入文字信息的内容进行回答,如果query与提供的材料无关,请回答"我不知道",另外也不要回答无关答案:
Context: {context}
Context: {context}
Question: {question}
Answer:"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
docs = retriever.get_relevant_documents(query)
# 基于docs来prompt,返回你想要的内容
chain = load_qa_chain(Ollama(temperature=0), chain_type="stuff", prompt=PROMPT)
#chain = load_qa_chain(ChatOpenAI(temperature=0), chain_type="stuff", prompt=PROMPT)
result = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
return result['output_text']
if __name__ == "__main__":
# load embedding
load_embedding()
# 循环输入查询,直到输入 "exit"
while True:
query = input("Enter query (or 'exit' to quit): ")
if query == 'exit':
print('exit')
break
print("Query:" + query + '\nAnswer:' + prompt(query) + '\n')