forked from hunglc007/tensorflow-yolov4-tflite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
103 lines (90 loc) · 4.01 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import time
from absl import app, flags, logging
from absl.flags import FLAGS
import core.utils as utils
from core.yolov4 import YOLOv4, decode
from PIL import Image
from core.config import cfg
import cv2
import numpy as np
import tensorflow as tf
flags.DEFINE_string('framework', 'tf', '(tf, tflite')
flags.DEFINE_string('weights', './data/yolov4.weights',
'path to weights file')
flags.DEFINE_integer('size', 608, 'resize images to')
flags.DEFINE_boolean('tiny', False, 'yolov4 or yolov4-tiny')
flags.DEFINE_string('image', './data/kite.jpg', 'path to input image')
flags.DEFINE_string('output', 'result.png', 'path to output image')
def main(_argv):
if FLAGS.tiny:
STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
else:
STRIDES = np.array(cfg.YOLO.STRIDES)
ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
input_size = FLAGS.size
image_path = FLAGS.image
original_image = cv2.imread(image_path)
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
original_image_size = original_image.shape[:2]
image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size])
image_data = image_data[np.newaxis, ...].astype(np.float32)
if FLAGS.framework == 'tf':
input_layer = tf.keras.layers.Input([input_size, input_size, 3])
if FLAGS.tiny:
feature_maps = YOLOv4(input_layer)
bbox_tensors = []
for i, fm in enumerate(feature_maps):
bbox_tensor = decode(fm, i)
bbox_tensors.append(bbox_tensor)
model = tf.keras.Model(input_layer, bbox_tensors)
utils.load_weights_tiny(model, FLAGS.weights)
else:
feature_maps = YOLOv4(input_layer)
bbox_tensors = []
for i, fm in enumerate(feature_maps):
bbox_tensor = decode(fm, i)
bbox_tensors.append(bbox_tensor)
model = tf.keras.Model(input_layer, bbox_tensors)
utils.load_weights(model, FLAGS.weights)
model.summary()
pred_bbox = model.predict(image_data)
else:
# Load TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print(input_details)
print(output_details)
interpreter.set_tensor(input_details[0]['index'], image_data)
interpreter.invoke()
pred_bbox = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))]
for i, pred in enumerate(pred_bbox):
conv_shape = pred.shape
output_size = conv_shape[1]
conv_raw_dxdy = pred[:, :, :, :, 0:2]
conv_raw_dwdh = pred[:, :, :, :, 2:4]
xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size))
xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1), axis=2) # [gx, gy, 1, 2]
xy_grid = np.tile(tf.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1])
xy_grid = xy_grid.astype(np.float)
pred_xy = (tf.sigmoid(conv_raw_dxdy) + xy_grid) * STRIDES[i]
# pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i]) * STRIDES[i]
pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i])
pred[:, :, :, :, 0:4] = tf.concat([pred_xy, pred_wh], axis=-1)
pred_bbox = [tf.reshape(x, (-1, tf.shape(x)[-1])) for x in pred_bbox]
pred_bbox = tf.concat(pred_bbox, axis=0)
bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.3)
bboxes = utils.nms(bboxes, 0.45, method='nms')
image = utils.draw_bbox(original_image, bboxes)
image = Image.fromarray(image)
image.show()
# image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
# cv2.imwrite(FLAGS.output, image)
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass