forked from zzh8829/yolov3-tf2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert.py
36 lines (28 loc) · 1.04 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from absl import app, flags, logging
from absl.flags import FLAGS
import numpy as np
from yolov3_tf2.models import YoloV3, YoloV3Tiny
from yolov3_tf2.utils import load_darknet_weights
flags.DEFINE_string('weights', './data/yolov3.weights', 'path to weights file')
flags.DEFINE_string('output', './checkpoints/yolov3.tf', 'path to output')
flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny')
flags.DEFINE_integer('num_classes', 80, 'number of classes in the model')
def main(_argv):
if FLAGS.tiny:
yolo = YoloV3Tiny(classes=FLAGS.num_classes)
else:
yolo = YoloV3(classes=FLAGS.num_classes)
yolo.summary()
logging.info('model created')
load_darknet_weights(yolo, FLAGS.weights, FLAGS.tiny)
logging.info('weights loaded')
img = np.random.random((1, 320, 320, 3)).astype(np.float32)
output = yolo(img)
logging.info('sanity check passed')
yolo.save_weights(FLAGS.output)
logging.info('weights saved')
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass