-
Notifications
You must be signed in to change notification settings - Fork 464
/
run.py
217 lines (191 loc) · 6.61 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Apache Software License 2.0
#
# Copyright (c) ZenML GmbH 2024. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from typing import Optional
import click
from pipelines import (
e2e_use_case_batch_inference,
e2e_use_case_deployment,
e2e_use_case_training,
)
from zenml.logger import get_logger
logger = get_logger(__name__)
@click.command(
help="""
ZenML E2E project CLI v0.0.1.
Run the ZenML E2E project model training pipeline with various
options.
Examples:
\b
# Run the pipeline with default options
python run.py
\b
# Run the pipeline without cache
python run.py --no-cache
\b
# Run the pipeline without Hyperparameter tuning
python run.py --no-hp-tuning
\b
# Run the pipeline without NA drop and normalization,
# but dropping columns [A,B,C] and keeping 10% of dataset
# as test set.
python run.py --no-drop-na --no-normalize --drop-columns A,B,C --test-size 0.1
\b
# Run the pipeline with Quality Gate for accuracy set at 90% for train set
# and 85% for test set. If any of accuracies will be lower - pipeline will fail.
python run.py --min-train-accuracy 0.9 --min-test-accuracy 0.85 --fail-on-accuracy-quality-gates
"""
)
@click.option(
"--no-cache",
is_flag=True,
default=False,
help="Disable caching for the pipeline run.",
)
@click.option(
"--no-drop-na",
is_flag=True,
default=False,
help="Whether to skip dropping rows with missing values in the dataset.",
)
@click.option(
"--no-normalize",
is_flag=True,
default=False,
help="Whether to skip normalization in the dataset.",
)
@click.option(
"--drop-columns",
default=None,
type=click.STRING,
help="Comma-separated list of columns to drop from the dataset.",
)
@click.option(
"--test-size",
default=0.2,
type=click.FloatRange(0.0, 1.0),
help="Proportion of the dataset to include in the test split.",
)
@click.option(
"--min-train-accuracy",
default=0.8,
type=click.FloatRange(0.0, 1.0),
help="Minimum training accuracy to pass to the model evaluator.",
)
@click.option(
"--min-test-accuracy",
default=0.8,
type=click.FloatRange(0.0, 1.0),
help="Minimum test accuracy to pass to the model evaluator.",
)
@click.option(
"--fail-on-accuracy-quality-gates",
is_flag=True,
default=False,
help="Whether to fail the pipeline run if the model evaluation step "
"finds that the model is not accurate enough.",
)
@click.option(
"--only-inference",
is_flag=True,
default=False,
help="Whether to run only inference pipeline.",
)
def main(
no_cache: bool = False,
no_drop_na: bool = False,
no_normalize: bool = False,
drop_columns: Optional[str] = None,
test_size: float = 0.2,
min_train_accuracy: float = 0.8,
min_test_accuracy: float = 0.8,
fail_on_accuracy_quality_gates: bool = False,
only_inference: bool = False,
):
"""Main entry point for the pipeline execution.
This entrypoint is where everything comes together:
* configuring pipeline with the required parameters
(some of which may come from command line arguments)
* launching the pipeline
Args:
no_cache: If `True` cache will be disabled.
no_drop_na: If `True` NA values will not be dropped from the dataset.
no_normalize: If `True` normalization will not be done for the dataset.
drop_columns: List of comma-separated names of columns to drop from the dataset.
test_size: Percentage of records from the training dataset to go into the test dataset.
min_train_accuracy: Minimum acceptable accuracy on the train set.
min_test_accuracy: Minimum acceptable accuracy on the test set.
fail_on_accuracy_quality_gates: If `True` and any of minimal accuracy
thresholds are violated - the pipeline will fail. If `False` thresholds will
not affect the pipeline.
only_inference: If `True` only inference pipeline will be triggered.
"""
# Run a pipeline with the required parameters. This executes
# all steps in the pipeline in the correct order using the orchestrator
# stack component that is configured in your active ZenML stack.
pipeline_args = {}
if no_cache:
pipeline_args["enable_cache"] = False
if not only_inference:
# Execute Training Pipeline
run_args_train = {
"drop_na": not no_drop_na,
"normalize": not no_normalize,
"test_size": test_size,
"min_train_accuracy": min_train_accuracy,
"min_test_accuracy": min_test_accuracy,
"fail_on_accuracy_quality_gates": fail_on_accuracy_quality_gates,
}
if drop_columns:
run_args_train["drop_columns"] = drop_columns.split(",")
pipeline_args["config_path"] = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"configs",
"train_config.yaml",
)
pipeline_args["run_name"] = (
f"e2e_use_case_training_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}"
)
e2e_use_case_training.with_options(**pipeline_args)(**run_args_train)
logger.info("Training pipeline finished successfully!")
# Execute Deployment Pipeline
run_args_inference = {}
pipeline_args["config_path"] = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"configs",
"deployer_config.yaml",
)
pipeline_args["run_name"] = (
f"e2e_use_case_deployment_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}"
)
e2e_use_case_deployment.with_options(**pipeline_args)(**run_args_inference)
# Execute Batch Inference Pipeline
run_args_inference = {}
pipeline_args["config_path"] = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"configs",
"inference_config.yaml",
)
pipeline_args["run_name"] = (
f"e2e_use_case_batch_inference_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}"
)
e2e_use_case_batch_inference.with_options(**pipeline_args)(
**run_args_inference
)
if __name__ == "__main__":
main()