|
| 1 | +## pentagons that tile the plane aperiodically, by toimine |
| 2 | +h2. |
| 3 | + |
| 4 | +slider(a, 1.383623710490773765269419035368675322851830232551, 0.4, 1.5) |
| 5 | + |
| 6 | +let(d = solve(d=0, 3, |
| 7 | + a - angle_from_matrix(lxz(d) * ryx(2*a) * lxz(-d) * rxy(4 * a) * lxz(d) * ryx(2*a) * lxz(-d)) |
| 8 | + )) |
| 9 | + |
| 10 | +let(d1 = dist_from_matrix(lxz(d) * ryx(2*a) * lxz(-d) * rxy(4 * a) * lxz(d) * ryx(2*a) * lxz(-d))) |
| 11 | + |
| 12 | +# big angles are twice the size of middle angles |
| 13 | +let(aa = 2*a) |
| 14 | + |
| 15 | +# one small angle + two big ones equal 360 degrees |
| 16 | +let(b = 2*pi-4*a) |
| 17 | + |
| 18 | +tile(d,aa,d,b,d,aa,d,a,d1,a) |
| 19 | + |
| 20 | +# vertex order (treestate 0 for example): |
| 21 | +# 1 |
| 22 | +# ^ |
| 23 | +# / \ |
| 24 | +#0/ \2 |
| 25 | +# | | |
| 26 | +# |___| |
| 27 | +#4 3 |
| 28 | + |
| 29 | +# connection order |
| 30 | +# ^ |
| 31 | +# 2/ \3 |
| 32 | +# / \ |
| 33 | +#L| |R |
| 34 | +# |___| |
| 35 | +# P |
| 36 | + |
| 37 | +treestate(0,LEFT,2,3,RIGHT,PARENT) #0 |
| 38 | +treestate(0,6,2,3,RIGHT,PARENT) #1 |
| 39 | +treestate(0,RIGHT,PARENT,LEFT,5,0) #2 |
| 40 | +treestate(0,4,RIGHT,PARENT,LEFT,1) #3 |
| 41 | +treestate(0,RIGHT,RIGHT,PARENT,5,0) #4 |
| 42 | +treestate(0,4,PARENT,LEFT,LEFT,0) #5 |
| 43 | +treestate(0,RIGHT,PARENT,LEFT,LEFT,0) #6 |
0 commit comments