forked from grame-cncm/faustlibraries
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aanl.lib
860 lines (764 loc) · 25.5 KB
/
aanl.lib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
//################################ aanl.lib ##########################################
// A library for antialiased nonlinearities. Its official prefix is `aa`.
//
// This library provides aliasing-suppressed nonlinearities through first-order
// and second-order approximations of continuous-time signals, functions,
// and convolution based on antiderivatives. This technique is particularly
// effective if combined with low-factor oversampling, for example, operating
// at 96 kHz or 192 kHz sample-rate.
//
// The library contains trigonometric functions as well as other nonlinear
// functions such as bounded and unbounded saturators.
//
// Due to their limited domains or ranges, some of these functions may not
// suitable for audio nonlinear processing or waveshaping, although
// they have been included for completeness. Some other functions,
// for example, tan() and tanh(), are only available with first-order
// antialiasing due to the complexity of the antiderivative of the
// x * f(x) term, particularly because of the necessity of the dilogarithm
// function, which requires special implementation.
//
// Future improvements to this library may include an adaptive
// mechanism to set the ill-conditioned cases threshold to improve
// performance in varying cases.
//
// Note that the antialiasing functions introduce a delay in the path,
// respectively half and one-sample delay for first and second-order functions.
//
// Also note that due to division by differences, it is vital to use
// double-precision or more to reduce errors.
//
// The environment identifier for this library is `aa`. After importing
// the standard libraries in Faust, the functions below can be called as `aa.function_name`.
//
// #### References
//
// * <https://www.dafx.de/paper-archive/2016/dafxpapers/20-DAFx-16_paper_41-PN.pdf>
//########################################################################################
declare name "Antialiased nonlinearities";
declare version "0.1";
ba = library("basics.lib");
ma = library("maths.lib");
//==============================Auxiliary Functions=======================================
//========================================================================================
// ---------- Constant --------------------------------------------------------
MAX = ma.INFINITY;
//-------`(aa.)clip`----------
// Clipping function
//-----------------------------
clip(l, h, x) = max(l, min(h, x));
//-------`(aa.)Rsqrt`----------
// Real-valued sqrt()
//-----------------------------
Rsqrt(x) = sqrt(max(0.0, x));
//-------`(aa.)Rlog`----------
// Real-valued log()
//-----------------------------
Rlog(x) = log(max(ma.EPSILON, x));
//-------`(aa.)Rtan`----------
// Real-valued tan()
//-----------------------------
Rtan(x) = tan(clip(-MAX, MAX, x));
//-------`(aa.)Racos`----------
// Real-valued acos()
//-----------------------------
Racos(x) = acos(clip(-1.0, 1.0, x));
//-------`(aa.)Rasin`----------
// Real-valued asin()
//-----------------------------
Racos(x) = asin(clip(-1.0, 1.0, x));
//-------`(aa.)Racosh`----------
// Real-valued acosh()
//-----------------------------
Racos(x) = ma.acosh(clip(1.0, MAX, x));
//-------`(aa.)Rcosh`----------
// Real-valued cosh()
//-----------------------------
Rcosh(x) = min(MAX, ma.cosh(x));
//-------`(aa.)Rsinh`----------
// Real-valued sinh()
//------------------------------
Rsinh(x) = clip(-MAX, MAX, ma.sinh(x));
//-------`(aa.)Ratanh`----------
// Real-valued atanh()
//------------------------------
Ratanh(x) = ma.atanh(clip(-1.0 + ma.EPSILON, 1.0 - ma.EPSILON, x));
//-------`(aa.)ADAA1`---------------------
// Generalised first-order ADAA function.
//----------------------------------------
declare ADAA1 author "Dario Sanfilippo";
declare ADAA1 copyright "Copyright (C) 2021 Dario Sanfilippo
declare ADAA1 license "LGPL v3.0 license";
ADAA1(EPS, f, F1, x) = D1q
with {
D1q = ba.if(abs(x - x') <= EPS, ill_D1q, safe_D1q)
with {
ill_D1q = f(x_m);
safe_D1q = (F1(x) - F1(x')) / (x - x');
x_m = .5 * (x + x');
};
};
//-------`(aa.)ADAA2`---------------------
// Generalised second-order ADAA function.
//----------------------------------------
declare ADAA2 author "Dario Sanfilippo";
declare ADAA2 copyright "Copyright (C) 2021 Dario Sanfilippo
declare ADAA2 license "LGPL v3.0 license";
ADAA2(EPS, f, F1, F2, x) = T1 + T2
with {
T1 = ba.if((x - x') ^ 2.0 <= EPS, ill_T1, safe_T1)
with {
ill_T1 = .5 * f((x + 2.0 * x') / 3.0);
safe_T1 = (x * (F1(x) - F1(x')) - (F2(x) - F2(x'))) /
((x - x') ^ 2.0);
};
T2 = ba.if((x' - x'') ^ 2.0 <= EPS, ill_T2, safe_T2)
with {
ill_T2 = .5 * f((x'' + 2.0 * x') / 3.0);
safe_T2 = (x'' * (F1(x'') - F1(x')) - (F2(x'') - F2(x'))) /
((x'' - x') ^ 2.0);
};
};
//==============================Main functions============================================
//========================================================================================
//================= Saturators ===============
//
// These antialiased saturators perform best with high-amplitude input
// signals. If the input is only slightly saturated, hence producing
// negligible aliasing, the trivial saturator may result in a better
// overall output, as noise can be introduced by first and second ADAA
// at low amplitudes.
//
// Once determining the lowest saturation level for which the antialiased
// functions perform adequately, it might be sensible to cross-fade
// between the trivial and the antialiased saturators according to the
// amplitude profile of the input signal.
//==============================================
//-------`(aa.)hardclip`---------------------
//
// First-order ADAA hard-clip.
//
// The domain of this function is ℝ; its theoretical range is [-1.0; 1.0].
//
// #### Usage
// ```
// _ : aa.hardclip : _;
// ```
declare hardclip author "Dario Sanfilippo";
declare hardclip copyright "Copyright (C) 2021 Dario Sanfilippo
declare hardclip license "LGPL v3.0 license";
hardclip(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = clip(-1.0, 1.0, x_f);
F1(x_F1) = ba.if( (x_F1 <= 1.0) & (x_F1 >= -1.0),
.5 * x_F1 ^ 2.0,
x_F1 * ma.signum(x_F1) - .5);
};
//-------`(aa.)hardclip2`---------------------
//
// Second-order ADAA hard-clip.
//
// The domain of this function is ℝ; its theoretical range is [-1.0; 1.0].
//
// #### Usage
// ```
// _ : aa.hardclip2 : _;
// ```
declare hardclip2 author "Dario Sanfilippo";
declare hardclip2 copyright "Copyright (C) 2021 Dario Sanfilippo
declare hardclip2 license "LGPL v3.0 license";
hardclip2(x) = ADAA2(EPS, f, F1, F2, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = clip(-1.0, 1.0, x_f);
F1(x_F1) = ba.if( (x_F1 <= 1.0) & (x_F1 >= -1.0),
.5 * x_F1 ^ 2.0,
x_F1 * ma.signum(x_F1) - .5);
F2(x_F2) = ba.if( (x_F2 <= 1.0) & (x_F2 >= -1.0),
(1.0 / 3.0) * x_F2 ^ 3.0,
((.5 * x_F2 ^ 2.0) - 1.0 / 6.0) *
ma.signum(x_F2));
};
//-------`(aa.)cubic1`---------------------
//
// First-order ADAA cubic saturator.
//
// The domain of this function is ℝ; its theoretical range is
// [-2.0/3.0; 2.0/3.0].
//
// #### Usage
// ```
// _ : aa.cubic1 : _;
// ```
declare cubic1 author "Dario Sanfilippo";
declare cubic1 copyright "Copyright (C) 2021 Dario Sanfilippo
declare cubic1 license "LGPL v3.0 license";
cubic1(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = ba.if( (x_f < 1.0) & (x_f > -1.0),
x_f - x_f ^ 3.0 / 3.0,
(2.0 / 3.0) * ma.signum(x_f));
F1(x_F1) = ba.if( x_F1 <= -1.0,
x_F1 * -2.0 / 3.0,
ba.if( x_F1 >= 1.0,
x_F1 * 2.0 / 3.0,
x_F1 ^ 2.0 / 2.0 - x_F1 ^ 4.0 / 12.0));
};
//-------`(aa.)parabolic`---------------------
//
// First-order ADAA parabolic saturator.
//
// The domain of this function is ℝ; its theoretical range is [-1.0; 1.0].
//
// #### Usage
// ```
// _ : aa.parabolic : _;
// ```
declare parabolic author "Dario Sanfilippo";
declare parabolic copyright "Copyright (C) 2021 Dario Sanfilippo
declare parabolic license "LGPL v3.0 license";
parabolic(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = ba.if( abs(x_f) <= 2.0,
x_f * (1.0 - abs(x_f) / 4.0),
ma.signum(x_f));
F1(x_F1) = ba.if( abs(x_F1) <= 2.0,
(-1.0 / 12.0) * x_F1 ^ 2.0 *
(x_F1 * ma.signum(x_F1) - 6.0),
abs(x_F1));
};
//-------`(aa.)parabolic2`---------------------
//
// Second-order ADAA parabolic saturator.
//
// The domain of this function is ℝ; its theoretical range is [-1.0; 1.0].
//
// #### Usage
// ```
// _ : aa.parabolic : _;
// ```
declare parabolic2 author "Dario Sanfilippo";
declare parabolic2 copyright "Copyright (C) 2021 Dario Sanfilippo
declare parabolic2 license "LGPL v3.0 license";
parabolic2(x) = ADAA2(EPS, f, F1, F2, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = ba.if( abs(x_f) <= 2.0,
x_f * (1.0 - abs(x_f) / 4.0),
ma.signum(x_f));
F1(x_F1) = ba.if( abs(x_F1) <= 2.0,
(-1.0 / 12.0) * x_F1 ^ 2.0 *
(x_F1 * ma.signum(x_F1) - 6.0),
abs(x_F1));
F2(x_F2) = ba.if( abs(x_F2) <= 2.0,
(1.0 / 48.0) * x_F2 ^ 3.0 *
(16.0 - 3.0 * x_F2 * ma.signum(x_F2)),
.5 * x_F2 ^ 2.0 * ma.signum(x_F2));
};
//-------`(aa.)hyperbolic`---------------------
//
// First-order ADAA hyperbolic saturator.
//
// The domain of this function is ℝ; its theoretical range is ]-1.0; 1.0[.
//
// #### Usage
// ```
// _ : aa.hyperbolic : _;
// ```
declare hyperbolic author "Dario Sanfilippo";
declare hyperbolic copyright "Copyright (C) 2021 Dario Sanfilippo
declare hyperbolic license "LGPL v3.0 license";
hyperbolic(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = x_f / (1.0 + abs(x_f));
F1(x_F1) = abs(x_F1) - log(1.0 + abs(x_F1));
};
//-------`(aa.)hyperbolic2`---------------------
//
// Second-order ADAA hyperbolic saturator.
//
// The domain of this function is ℝ; its theoretical range is ]-1.0; 1.0[.
//
// #### Usage
// ```
// _ : aa.hyperbolic2 : _;
// ```
declare hyperbolic2 author "Dario Sanfilippo";
declare hyperbolic2 copyright "Copyright (C) 2021 Dario Sanfilippo
declare hyperbolic2 license "LGPL v3.0 license";
hyperbolic2(x) = ADAA2(EPS, f, F1, F2, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = x_f / (1.0 + abs(x_f));
F1(x_F1) = abs(x_F1) - log(1.0 + abs(x_F1));
F2(x_F2) = ma.signum(x_F2) * (.5 * (3.0 - 2.0 * abs(x_F2) + x_F2 ^ 2.0 +
2.0 * log(1.0 + abs(x_F2))) - 3.0 / 2.0) + 3.0 / 2.0;
};
//-------`(aa.)sinarctan`---------------------
//
// First-order ADAA sin(atan()) saturator.
//
// The domain of this function is ℝ; its theoretical range is ]-1.0; 1.0[.
//
// #### Usage
// ```
// _ : aa.sinatan : _;
// ```
declare sinarctan author "Dario Sanfilippo";
declare sinarctan copyright "Copyright (C) 2021 Dario Sanfilippo
declare sinarctan license "LGPL v3.0 license";
sinarctan(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = x_f / sqrt(1.0 + x_f ^ 2.0);
F1(x_F1) = sqrt(x_F1 ^ 2.0 + 1.0) + const
with {
const = -1.0; // for F1(0) = 0 to minimise precision loss
};
};
//-------`(aa.)sinarctan2`---------------------
//
// Second-order ADAA sin(atan()) saturator.
//
// The domain of this function is ℝ; its theoretical range is ]-1.0; 1.0[.
//
// #### Usage
// ```
// _ : aa.sinarctan2 : _;
// ```
declare sinarctan2 author "Dario Sanfilippo";
declare sinarctan2 copyright "Copyright (C) 2021 Dario Sanfilippo
declare sinarctan2 license "LGPL v3.0 license";
sinarctan2(x) = ADAA2(EPS, f, F1, F2, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = x_f / sqrt(1.0 + x_f ^ 2.0);
F1(x_F1) = sqrt(x_F1 ^ 2.0 + 1.0) + const
with {
const = -1.0; // for F1(0) = 0 to minimise precision loss
};
F2(x_F2) = .5 * x_F2 * sqrt(x_F2 ^ 2.0 + 1.0) - .5 * ma.asinh(x_F2);
};
//-------`(aa.)tanh1`---------------------
//
// First-order ADAA tanh() saturator.
//
// The domain of this function is ℝ; its theoretical range is ]-1.0; 1.0[.
//
// #### Usage
// ```
// _ : aa.tanh1 : _;
// ```
declare tanh1 author "Dario Sanfilippo";
declare tanh1 copyright "Copyright (C) 2021 Dario Sanfilippo
declare tanh1 license "LGPL v3.0 license";
tanh1(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = ma.tanh(x_f);
F1(x_F1) = log(Rcosh(x_F1));
};
//-------`(aa.)arctan`---------------------
//
// First-order ADAA atan().
//
// The domain of this function is ℝ; its theoretical range is ]-π/2.0; π/2.0[.
//
// #### Usage
// ```
// _ : aa.arctan : _;
// ```
declare arctan author "Dario Sanfilippo";
declare arctan copyright "Copyright (C) 2021 Dario Sanfilippo
declare arctan license "LGPL v3.0 license";
arctan(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = atan(x_f);
F1(x_F1) = x_F1 * f(x_F1) - .5 * log(x_F1 ^ 2.0 + 1.0);
};
//-------`(aa.)arctan2`---------------------
//
// Second-order ADAA atan().
//
// The domain of this function is ℝ; its theoretical range is ]-π/2.0; π/2.0[.
//
// #### Usage
// ```
// _ : aa.arctan2 : _;
// ```
declare arctan2 author "Dario Sanfilippo";
declare arctan2 copyright "Copyright (C) 2021 Dario Sanfilippo
declare arctan2 license "LGPL v3.0 license";
arctan2(x) = ADAA2(EPS, f, F1, F2, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = atan(x_f);
F1(x_F1) = x_F1 * f(x_F1) - .5 * log(x_F1 ^ 2.0 + 1.0);
F2(x_F2) = .5 * x_F2 ^ 2.0 * f(x_F2) - x_F2 / 2.0 + .5 * f(x_F2);
};
//-------`(aa.)asinh1`---------------------
//
// First-order ADAA asinh() saturator (unbounded).
//
// The domain of this function is ℝ; its theoretical range is ℝ.
//
// #### Usage
// ```
// _ : aa.asinh1 : _;
// ```
declare asinh1 author "Dario Sanfilippo";
declare asinh1 copyright "Copyright (C) 2021 Dario Sanfilippo
declare asinh1 license "LGPL v3.0 license";
asinh1(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = ma.asinh(x_f);
F1(x_F1) = x_F1 * f(x_F1) - sqrt(1.0 + x_F1 ^ 2.0) + const
with {
const = 1.0; // for F1(0) = 0 to minimise precision loss
};
};
//-------`(aa.)asinh2`---------------------
//
// Second-order ADAA asinh() saturator (unbounded).
//
// The domain of this function is ℝ; its theoretical range is ℝ.
//
// #### Usage
// ```
// _ : aa.asinh2 : _;
// ```
declare asinh2 author "Dario Sanfilippo";
declare asinh2 copyright "Copyright (C) 2021 Dario Sanfilippo
declare asinh2 license "LGPL v3.0 license";
asinh2(x) = ADAA2(EPS, f, F1, F2, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = ma.asinh(x_f);
F1(x_F1) = x_F1 * f(x_F1) - sqrt(1.0 + x_F1 ^ 2.0) + const
with {
const = 1.0; // for F1(0) = 0 to minimise precision loss
};
F2(x_F2) = .25 * (2.0 * x_F2 ^ 2.0 * f(x_F2) + f(x_F2) -
sqrt(x_F2 ^ 2.0 + 1.0) * x_F2);
};
//================= Trigonometry ===============
// These functions are reliable if input signals are within their domains.
//============================================
//-------`(aa.)cosine1`---------------------
//
// First-order ADAA cos().
//
// The domain of this function is ℝ; its theoretical range is [-1.0; 1.0].
//
// #### Usage
// ```
// _ : aa.cosine1 : _;
// ```
declare cosine1 author "Dario Sanfilippo";
declare cosine1 copyright "Copyright (C) 2021 Dario Sanfilippo
declare cosine1 license "LGPL v3.0 license";
cosine1(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = cos(x_f);
F1(x_F1) = sin(x_F1);
};
//-------`(aa.)cosine2`---------------------
//
// Second-order ADAA cos().
//
// The domain of this function is ℝ; its theoretical range is [-1.0; 1.0].
//
// #### Usage
// ```
// _ : aa.cosine2 : _;
// ```
declare cosine2 author "Dario Sanfilippo";
declare cosine2 copyright "Copyright (C) 2021 Dario Sanfilippo
declare cosine2 license "LGPL v3.0 license";
cosine2(x) = ADAA2(EPS, f, F1, F2, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = cos(x_f);
F1(x_F1) = sin(x_F1);
F2(x_F2) = x_F2 * sin(x_F2) + cos(x_F2);
};
//-------`(aa.)arccos`---------------------
//
// First-order ADAA acos().
//
// The domain of this function is [-1.0; 1.0]; its theoretical range is
// [π; 0.0].
//
// #### Usage
// ```
// _ : aa.arccos : _;
// ```
declare arccos author "Dario Sanfilippo";
declare arccos copyright "Copyright (C) 2021 Dario Sanfilippo
declare arccos license "LGPL v3.0 license";
arccos(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = Racos(x_f);
F1(x_F1) = x_F1 * f(x_F1) - Rsqrt(1.0 - x_F1 ^ 2.0) + const
with {
const = 1.0; // for F1(0) = 0 to minimise precision loss
};
};
//-------`(aa.)arccos2`---------------------
//
// Second-order ADAA acos().
//
// The domain of this function is [-1.0; 1.0]; its theoretical range is
// [π; 0.0].
//
// Note that this function is not accurate for low-amplitude or low-frequency
// input signals. In that case, the first-order ADAA arccos() can be used.
//
// #### Usage
// ```
// _ : aa.arccos2 : _;
// ```
declare arccos2 author "Dario Sanfilippo";
declare arccos2 copyright "Copyright (C) 2021 Dario Sanfilippo
declare arccos2 license "LGPL v3.0 license";
arccos2(x) = ADAA2(EPS, f, F1, F2, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = Racos(x_f);
F1(x_F1) = x_F1 * f(x_F1) - Rsqrt(1.0 - x_F1 ^ 2.0) + const
with {
const = 1.0; // for F1(0) = 0 to minimise precision loss
};
F2(x_F2) = .25 * (2.0 * x_F2 ^ 2.0 * f(x_F2) + Rasin(x_F2) -
Rsqrt(1.0 - x_F2 ^ 2.0));
};
//-------`(aa.)acosh1`---------------------
//
// First-order ADAA acosh().
//
// The domain of this function is ℝ >= 1.0; its theoretical range is ℝ >= 0.0.
//
// #### Usage
// ```
// _ : aa.acosh1 : _;
// ```
declare acosh1 author "Dario Sanfilippo";
declare acosh1 copyright "Copyright (C) 2021 Dario Sanfilippo
declare acosh1 license "LGPL v3.0 license";
acosh1(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = Racosh(x_f);
F1(x_F1) = x_F1 * f(x_F1) - Rsqrt(x_F1 - 1.0) * Rsqrt(x_F1 + 1.0);
};
//-------`(aa.)acosh2`---------------------
//
// Second-order ADAA acosh().
//
// The domain of this function is ℝ >= 1.0; its theoretical range is ℝ >= 0.0.
//
// Note that this function is not accurate for low-frequency input signals.
// In that case, the first-order ADAA acosh() can be used.
//
// #### Usage
// ```
// _ : aa.acosh2 : _;
// ```
declare acosh2 author "Dario Sanfilippo";
declare acosh2 copyright "Copyright (C) 2021 Dario Sanfilippo
declare acosh2 license "LGPL v3.0 license";
acosh2(x) = ADAA2(EPS, f, F1, F2, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = Racosh(x_f);
F1(x_F1) = x_F1 * f(x_F1) - Rsqrt(x_F1 - 1.0) * Rsqrt(x_F1 + 1.0);
F2(x_F2) = .5 * x_F2 ^ 2.0 * f(x_F2) - .25 *
Rsqrt(x_F2 - 1.0) * Rsqrt(x_F2 + 1.0) * x_F2 -
.25 * Rlog(x_F2 + Rsqrt(x_F2 - 1.0) * Rsqrt(x_F2 + 1.0));
};
//-------`(aa.)sine`---------------------
//
// First-order ADAA sin().
//
// The domain of this function is ℝ; its theoretical range is ℝ.
//
// #### Usage
// ```
// _ : aa.sine : _;
// ```
declare sine author "Dario Sanfilippo";
declare sine copyright "Copyright (C) 2021 Dario Sanfilippo
declare sine license "LGPL v3.0 license";
sine(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = sin(x_f);
F1(x_F1) = -1.0 * cos(x_F1);
};
//-------`(aa.)sine2`---------------------
//
// Second-order ADAA sin().
//
// The domain of this function is ℝ; its theoretical range is ℝ.
//
// #### Usage
// ```
// _ : aa.sine2 : _;
// ```
declare sine2 author "Dario Sanfilippo";
declare sine2 copyright "Copyright (C) 2021 Dario Sanfilippo
declare sine2 license "LGPL v3.0 license";
sine2(x) = ADAA2(EPS, f, F1, F2, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = sin(x_f);
F1(x_F1) = 1.0 - cos(x_F1);
F2(x_F2) = sin(x_F2) - x_F2 * cos(x_F2);
};
//-------`(aa.)arcsin`---------------------
//
// First-order ADAA asin().
//
// The domain of this function is [-1.0, 1.0]; its theoretical range is
// [-π/2.0; π/2.0].
//
// #### Usage
// ```
// _ : aa.arcsin : _;
// ```
declare arcsin author "Dario Sanfilippo";
declare arcsin copyright "Copyright (C) 2021 Dario Sanfilippo
declare arcsin license "LGPL v3.0 license";
arcsin(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = Rasin(x_f);
F1(x_F1) = x_F1 * f(x_F1) + Rsqrt(1.0 - x_F1 ^ 2.0) + const
with {
const = -1.0; // for F1(0) = 0 to minimise precision loss
};
};
//-------`(aa.)arcsin2`---------------------
//
// Second-order ADAA asin().
//
// The domain of this function is [-1.0, 1.0]; its theoretical range is
// [-π/2.0; π/2.0].
//
// Note that this function is not accurate for low-frequency input signals.
// In that case, the first-order ADAA asin() can be used.
//
// #### Usage
// ```
// _ : aa.arcsin2 : _;
// ```
declare arcsin2 author "Dario Sanfilippo";
declare arcsin2 copyright "Copyright (C) 2021 Dario Sanfilippo
declare arcsin2 license "LGPL v3.0 license";
arcsin2(x) = ADAA2(EPS, f, F1, F2, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = Rasin(x_f);
F1(x_F1) = x_F1 * f(x_F1) + Rsqrt(1.0 - x_F1 ^ 2.0) + const
with {
const = -1.0; // for F1(0) = 0 to minimise precision loss
};
F2(x_F2) = .25 * (Rsqrt(1.0 - x_F2 ^ 2.0) * x_F2 +
(2.0 * x_F2 ^ 2.0 - 1.0) * f(x_F2));
};
//-------`(aa.)tangent`---------------------
//
// First-order ADAA tan().
//
// The domain of this function is [-π/2.0; π/2.0]; its theoretical range is ℝ.
//
// #### Usage
// ```
// _ : aa.tangent : _;
// ```
declare tangent author "Dario Sanfilippo";
declare tangent copyright "Copyright (C) 2021 Dario Sanfilippo
declare tangent license "LGPL v3.0 license";
tangent(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = Rtan(x_f);
F1(x_F1) = -1.0 * Rlog(cos(x_F1));
};
//-------`(aa.)atanh1`---------------------
//
// First-order ADAA atanh().
//
// The domain of this function is ]-1.0; 1.0[; its theoretical range is ℝ.
//
// #### Usage
// ```
// _ : aa.atanh1 : _;
// ```
declare atanh1 author "Dario Sanfilippo";
declare atanh1 copyright "Copyright (C) 2021 Dario Sanfilippo
declare atanh1 license "LGPL v3.0 license";
atanh1(x) = ADAA1(EPS, f, F1, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = Ratanh(x_f);
F1(x_F1) = .5 * Rlog(1.0 - x_F1 ^ 2.0) + x_F1 * f(x_F1);
};
//-------`(aa.)atanh2`---------------------
//
// Second-order ADAA atanh().
//
// The domain of this function is ]-1.0; 1.0[; its theoretical range is ℝ.
//
// #### Usage
// ```
// _ : aa.atanh2 : _;
// ```
declare atanh2 author "Dario Sanfilippo";
declare atanh2 copyright "Copyright (C) 2021 Dario Sanfilippo
declare atanh2 license "LGPL v3.0 license";
atanh2(x) = ADAA2(EPS, f, F1, F2, x)
with {
EPS = 1.0 / ma.SR;
f(x_f) = Ratanh(x_f);
F1(x_F1) = .5 * Rlog(1.0 - x_F1 ^ 2.0) + x_F1 * f(x_F1);
F2(x_F2) = .5 * x_F2 ^ 2.0 * f(x_F2) + x_F2 / 2.0 + .25 *
Rlog(1.0 - x_F2) - .25 * Rlog(1.0 + x_F2);
};