forked from grame-cncm/faustlibraries
-
Notifications
You must be signed in to change notification settings - Fork 0
/
misceffects.lib
584 lines (536 loc) · 21.1 KB
/
misceffects.lib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
//################################## misceffects.lib ##########################################
// This library contains a collection of audio effects. Its official prefix is `ef`.
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2003-2016 GRAME, Centre National de Creation Musicale
----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ma = library("maths.lib");
ba = library("basics.lib");
de = library("delays.lib");
si = library("signals.lib");
an = library("analyzers.lib");
fi = library("filters.lib");
ef = library("misceffects.lib"); // for compatible copy/paste out of this file
declare name "Misc Effects Library";
declare version "2.0"; // TODO to check
//########################################################################################
/************************************************************************
FAUST library file, jos section
Except where noted otherwise, The Faust functions below in this
section are Copyright (C) 2003-2019 by Julius O. Smith III <[email protected]>
([jos](http://ccrma.stanford.edu/~jos/)), and released under the
(MIT-style) [STK-4.3](#stk-4.3-license) license.
MarkDown comments in this section are Copyright 2016-2019 by Romain
Michon and Julius O. Smith III, and are released under the
[CCA4I](https://creativecommons.org/licenses/by/4.0/) license (TODO: if/when Romain agrees!)
************************************************************************/
//======================================Dynamic===========================================
//========================================================================================
//---------------------`(ef.)cubicnl`-----------------------
// Cubic nonlinearity distortion.
// `cubicnl` is a standard Faust library.
//
// #### Usage:
//
// ```
// _ : cubicnl(drive,offset) : _
// _ : cubicnl_nodc(drive,offset) : _
// ```
//
// Where:
//
// * `drive`: distortion amount, between 0 and 1
// * `offset`: constant added before nonlinearity to give even harmonics. Note: offset
// can introduce a nonzero mean - feed cubicnl output to dcblocker to remove this.
//
// #### References:
//
// * <https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Nonlinear_Distortion.html>
//------------------------------------------------------------
cubicnl(drive,offset) = *(pregain) : +(offset) : clip(-1,1) : cubic
with {
pregain = pow(10.0,2*drive);
clip(lo,hi) = min(hi) : max(lo);
cubic(x) = x - x*x*x/3;
postgain = max(1.0,1.0/pregain);
};
cubicnl_nodc(drive,offset) = cubicnl(drive,offset) : fi.dcblocker;
//-----------------`(ef.)gate_mono`-------------------
// Mono signal gate.
// `gate_mono` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : gate_mono(thresh,att,hold,rel) : _
// ```
//
// Where:
//
// * `thresh`: dB level threshold above which gate opens (e.g., -60 dB)
// * `att`: attack time = time constant (sec) for gate to open (e.g., 0.0001 s = 0.1 ms)
// * `hold`: hold time = time (sec) gate stays open after signal level < thresh (e.g., 0.1 s)
// * `rel`: release time = time constant (sec) for gate to close (e.g., 0.020 s = 20 ms)
//
// #### References
//
// * <http://en.wikipedia.org/wiki/Noise_gate>
// * <http://www.soundonsound.com/sos/apr01/articles/advanced.asp>
// * <http://en.wikipedia.org/wiki/Gating_(sound_engineering)>
//------------------------------------------------------------
gate_mono(thresh,att,hold,rel,x) = x * gate_gain_mono(thresh,att,hold,rel,x);
//-----------------`(ef.)gate_stereo`-------------------
// Stereo signal gates.
// `gate_stereo` is a standard Faust function.
//
// #### Usage
//
// ```
// _,_ : gate_stereo(thresh,att,hold,rel) : _,_
// ```
//
// Where:
//
// * `thresh`: dB level threshold above which gate opens (e.g., -60 dB)
// * `att`: attack time = time constant (sec) for gate to open (e.g., 0.0001 s = 0.1 ms)
// * `hold`: hold time = time (sec) gate stays open after signal level < thresh (e.g., 0.1 s)
// * `rel`: release time = time constant (sec) for gate to close (e.g., 0.020 s = 20 ms)
//
// #### References
//
// * <http://en.wikipedia.org/wiki/Noise_gate>
// * <http://www.soundonsound.com/sos/apr01/articles/advanced.asp>
// * <http://en.wikipedia.org/wiki/Gating_(sound_engineering)>
//------------------------------------------------------------
gate_stereo(thresh,att,hold,rel,x,y) = ggm*x, ggm*y with {
ggm = gate_gain_mono(thresh,att,hold,rel,abs(x)+abs(y));
};
gate_gain_mono(thresh,att,hold,rel,x) = x : extendedrawgate : an.amp_follower_ar(att,rel) with {
extendedrawgate(x) = max(float(rawgatesig(x)),holdsig(x));
rawgatesig(x) = inlevel(x) > ba.db2linear(thresh);
minrate = min(att,rel);
inlevel = an.amp_follower_ar(minrate,minrate);
holdcounter(x) = (max(holdreset(x) * holdsamps,_) ~-(1));
holdsig(x) = holdcounter(x) > 0;
holdreset(x) = rawgatesig(x) < rawgatesig(x)'; // reset hold when raw gate falls
holdsamps = int(hold*ma.SR);
};
//=====================================Filtering==========================================
//========================================================================================
//-------------------------`(ef.)speakerbp`-------------------------------
// Dirt-simple speaker simulator (overall bandpass eq with observed
// roll-offs above and below the passband).
//
// Low-frequency speaker model = +12 dB/octave slope breaking to
// flat near f1. Implemented using two dc blockers in series.
//
// High-frequency model = -24 dB/octave slope implemented using a
// fourth-order Butterworth lowpass.
//
// Example based on measured Celestion G12 (12" speaker):
//
// `speakerbp` is a standard Faust function
//
// #### Usage
//
// ```
// speakerbp(f1,f2)
// _ : speakerbp(130,5000) : _
// ```
//------------------------------------------------------------
// TODO: perhaps this should be moved to physmodels.lib
// [JOS: I don't think so because it's merely a bandpass filter tuned to speaker bandwidth]
speakerbp(f1,f2) = fi.dcblockerat(f1) : fi.dcblockerat(f1) : fi.lowpass(4,f2);
//------------`(ef.)piano_dispersion_filter`---------------
// Piano dispersion allpass filter in closed form.
//
// #### Usage
//
// ```
// piano_dispersion_filter(M,B,f0)
// _ : piano_dispersion_filter(1,B,f0) : +(totalDelay),_ : fdelay(maxDelay) : _
// ```
//
// Where:
//
// * `M`: number of first-order allpass sections (compile-time only)
// Keep below 20. 8 is typical for medium-sized piano strings.
// * `B`: string inharmonicity coefficient (0.0001 is typical)
// * `f0`: fundamental frequency in Hz
//
// #### Outputs
//
// * MINUS the estimated delay at `f0` of allpass chain in samples,
// provided in negative form to facilitate subtraction
// from delay-line length.
// * Output signal from allpass chain
//
// #### Reference
//
// * "Dispersion Modeling in Waveguide Piano Synthesis Using Tunable
// Allpass Filters", by Jukka Rauhala and Vesa Valimaki, DAFX-2006, pp. 71-76
// * <http://lib.tkk.fi/Diss/2007/isbn9789512290666/article2.pdf>
// An erratum in Eq. (7) is corrected in Dr. Rauhala's encompassing
// dissertation (and below).
// * <http://www.acoustics.hut.fi/research/asp/piano/>
//------------------------------------------------------------
// TODO: perhaps this should be moved to physmodels.lib?
// [JOS: I vote yes when there is a piano model in physmodels.lib.]
piano_dispersion_filter(M,B,f0) = -Df0*M,seq(i,M,fi.tf1(a1,1,a1))
with {
a1 = (1-D)/(1+D); // By Eq. 3, have D >= 0, hence a1 >= 0 also
D = exp(Cd - Ikey(f0)*kd);
trt = pow(2.0,1.0/12.0); // 12th root of 2
logb(b,x) = log(x) / log(b); // log-base-b of x
Ikey(f0) = logb(trt,f0*trt/27.5);
Bc = max(B,0.000001);
kd = exp(k1*log(Bc)*log(Bc) + k2*log(Bc)+k3);
Cd = exp((m1*log(M)+m2)*log(Bc)+m3*log(M)+m4);
k1 = -0.00179;
k2 = -0.0233;
k3 = -2.93;
m1 = 0.0126;
m2 = 0.0606;
m3 = -0.00825;
m4 = 1.97;
wT = 2*ma.PI*f0/ma.SR;
polydel(a) = atan(sin(wT)/(a+cos(wT)))/wT;
Df0 = polydel(a1) - polydel(1.0/a1);
};
//-------------------------`(ef.)stereo_width`---------------------------
// Stereo Width effect using the Blumlein Shuffler technique.
// `stereo_width` is a standard Faust function.
//
// #### Usage
//
// ```
// _,_ : stereo_width(w) : _,_
// ```
//
// Where:
//
// * `w`: stereo width between 0 and 1
//
// At `w=0`, the output signal is mono ((left+right)/2 in both channels).
// At `w=1`, there is no effect (original stereo image).
// Thus, w between 0 and 1 varies stereo width from 0 to "original".
//
// #### Reference
//
// * "Applications of Blumlein Shuffling to Stereo Microphone Techniques"
// Michael A. Gerzon, JAES vol. 42, no. 6, June 1994
//------------------------------------------------------------
stereo_width(w) = shuffle : *(mgain),*(sgain) : shuffle
with {
shuffle = _,_ <: +,-; // normally scaled by 1/sqrt(2) for orthonormality,
mgain = 1-w/2; // but we pick up the needed normalization here.
sgain = w/2;
};
//===========================================Meshes=======================================
//========================================================================================
// TODO: the following should be in physmodels.lib when it will be operational
// [JOS: I think a new "Meshes" section would fit well after Modal Percussions.]
//----------------------------------`(ef.)mesh_square`------------------------------
// Square Rectangular Digital Waveguide Mesh.
//
// #### Usage
//
// ```
// bus(4*N) : mesh_square(N) : bus(4*N);
// ```
//
// Where:
//
// * `N`: number of nodes along each edge - a power of two (1,2,4,8,...)
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Mesh.html>
//
// #### Signal Order In and Out
//
// The mesh is constructed recursively using 2x2 embeddings. Thus,
// the top level of `mesh_square(M)` is a block 2x2 mesh, where each
// block is a `mesh(M/2)`. Let these blocks be numbered 1,2,3,4 in the
// geometry NW,NE,SW,SE, i.e., as
// 1 2
// 3 4
// Each block has four vector inputs and four vector outputs, where the
// length of each vector is `M/2`. Label the input vectors as Ni,Ei,Wi,Si,
// i.e., as the inputs from the North, East South, and West,
// and similarly for the outputs. Then, for example, the upper
// left input block of M/2 signals is labeled 1Ni. Most of the
// connections are internal, such as 1Eo -> 2Wi. The `8*(M/2)` input
// signals are grouped in the order
// 1Ni 2Ni
// 3Si 4Si
// 1Wi 3Wi
// 2Ei 4Ei
// and the output signals are
// 1No 1Wo
// 2No 2Eo
// 3So 3Wo
// 4So 4Eo
// or
//
// In: 1No 1Wo 2No 2Eo 3So 3Wo 4So 4Eo
//
// Out: 1Ni 2Ni 3Si 4Si 1Wi 3Wi 2Ei 4Ei
//
// Thus, the inputs are grouped by direction N,S,W,E, while the
// outputs are grouped by block number 1,2,3,4, which can also be
// interpreted as directions NW, NE, SW, SE. A simple program
// illustrating these orderings is `process = mesh_square(2);`.
//
// #### Example
//
// Reflectively terminated mesh impulsed at one corner:
//
// ```
// mesh_square_test(N,x) = mesh_square(N)~(busi(4*N,x)) // input to corner
// with { busi(N,x) = bus(N) : par(i,N,*(-1)) : par(i,N-1,_), +(x); };
// process = 1-1' : mesh_square_test(4); // all modes excited forever
// ```
//
// In this simple example, the mesh edges are connected as follows:
//
// 1No -> 1Ni, 1Wo -> 2Ni, 2No -> 3Si, 2Eo -> 4Si,
//
// 3So -> 1Wi, 3Wo -> 3Wi, 4So -> 2Ei, 4Eo -> 4Ei
//
// A routing matrix can be used to obtain other connection geometries.
//------------------------------------------------------------
// four-port scattering junction:
mesh_square(1) =
si.bus(4) <: par(i,4,*(-1)), (si.bus(4) :> (*(.5)) <: si.bus(4)) :> si.bus(4);
// rectangular NxN square waveguide mesh:
mesh_square(N) = si.bus(4*N) : (route_inputs(N/2) : par(i,4,mesh_square(N/2)))
~(prune_feedback(N/2))
: prune_outputs(N/2) : route_outputs(N/2) : si.bus(4*N)
with {
// select block i of N, block size = M:
s(i,N,M) = par(j, M*N, Sv(i, j))
with { Sv(i,i) = si.bus(N); Sv(i,j) = si.block(N); };
// prune mesh outputs down to the signals which make it out:
prune_outputs(N)
= si.bus(16*N) :
si.block(N), si.bus(N), si.block(N), si.bus(N),
si.block(N), si.bus(N), si.bus(N), si.block(N),
si.bus(N), si.block(N), si.block(N), si.bus(N),
si.bus(N), si.block(N), si.bus(N), si.block(N)
: si.bus(8*N);
// collect mesh outputs into standard order (N,W,E,S):
route_outputs(N)
= si.bus(8*N)
<: s(4,N,8),s(5,N,8), s(0,N,8),s(2,N,8),
s(3,N,8),s(7,N,8), s(1,N,8),s(6,N,8)
: si.bus(8*N);
// collect signals used as feedback:
prune_feedback(N) = si.bus(16*N) :
si.bus(N), si.block(N), si.bus(N), si.block(N),
si.bus(N), si.block(N), si.block(N), si.bus(N),
si.block(N), si.bus(N), si.bus(N), si.block(N),
si.block(N), si.bus(N), si.block(N), si.bus(N) :
si.bus(8*N);
// route mesh inputs (feedback, external inputs):
route_inputs(N) = si.bus(8*N), si.bus(8*N)
<:s(8,N,16),s(4,N,16), s(12,N,16),s(3,N,16),
s(9,N,16),s(6,N,16), s(1,N,16),s(14,N,16),
s(0,N,16),s(10,N,16), s(13,N,16),s(7,N,16),
s(2,N,16),s(11,N,16), s(5,N,16),s(15,N,16)
: si.bus(16*N);
};
//--------------------`(ef.)reverseEchoN(nChans,delay)`-------------------
// Reverse echo effect
//
// #### Usage
//
// ```
// _ : ef.reverseEchoN(N,delay) : si.bus(N)
// ```
//
// Where:
//
// * `N`: Number of output channels desired (1 or more)
// * `delay`: echo delay (integer power of 2)
//
// #### Demo
//
// ```
// _ : dm.reverseEchoN(N) : _,_
// ```
//
// #### Description
//
// The effect uses N instances of reverseDelayRamped at different phases.
//
//------------------------------------------------------------
reverseEchoN(N,delMax) = _<: par(i,N,ef.reverseDelayRamped(delMax,i/N));
//-------------------`(ef.)reverseDelayRamped(delay,phase)`------------------
// Reverse delay with amplitude ramp
//
// #### Usage
//
// ```
// _ : ef.reverseDelayRamped(delay,phase) : _
// ```
//
// Where:
//
// * `delay`: echo delay (integer power of 2)
// * `phase`: float between 0 and 1 giving ramp delay phase*delay
//
// #### Demo
//
// ```
// _ : dm.reverseEchoN(N) : _,_
// ```
//
//------------------------------------------------------------
reverseDelayRamped(delMax,phs) = rampGain * de.delay(delMax,del) with {
rampGain = 4 * (del/delMax) * (1 - del/delMax); // suppress click when delay-line wraps around
delOffset = int(floor(0.5 + delMax * max(0,min(0.999999,phs)))); // starting point in delay line
startPulse = (1-1') * delOffset;
del = int(startPulse : + ~ +(2)) & (delMax-1);
};
//-------------------`(ef.)uniformPanToStereo(nChans)`------------------
// Pan nChans channels to the stereo field, spread uniformly left to right
//
// #### Usage
//
// ```
// si.bus(N) : ef.uniformPanToStereo(N) : _,_
// ```
//
// Where:
//
// * `N`: Number of input channels to pan down to stereo
//
// #### Demo
//
// ```
// _ : dm.reverseEchoN(N) : _,_
// ```
//
//------------------------------------------------------------
uniformPanToStereo(N) = si.bus(N) <: par(i,2*N,_) :
(par(i,N,*(i/(N-1))) :> _),
(par(i,N,*(1-i/(N-1))) :> _);
// end jos section
/************************************************************************
************************************************************************
FAUST library file, GRAME section
Except where noted otherwise, Copyright (C) 2003-2017 by GRAME,
Centre National de Creation Musicale.
----------------------------------------------------------------------
GRAME LICENSE
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
//========================================Time Based======================================
//========================================================================================
//----------`(ef.)echo`----------
// A simple echo effect.
//
// `echo` is a standard Faust function
//
// #### Usage
//
// ```
// _ : echo(maxDuration,duration,feedback) : _
// ```
//
// Where:
//
// * `maxDuration`: the max echo duration in seconds
// * `duration`: the echo duration in seconds
// * `feedback`: the feedback coefficient
//----------------------------------------------------
// TODO: author RM
echo(maxDuration,duration,feedback) = +~de.delay(maxDel,del)*feedback
with{
maxDel = ma.SR*maxDuration;
del = ma.SR*duration;
};
// TODO demo function for echo
//=======================================Pitch Shifting===================================
//========================================================================================
//--------------`(ef.)transpose`----------------
// A simple pitch shifter based on 2 delay lines.
// `transpose` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : transpose(w, x, s) : _
// ```
//
// Where:
//
// * `w`: the window length (samples)
// * `x`: crossfade duration duration (samples)
// * `s`: shift (semitones)
//-----------------------------------------
transpose(w, x, s, sig) = de.fdelay(maxDelay,d,sig)*ma.fmin(d/x,1) +
de.fdelay(maxDelay,d+w,sig)*(1-ma.fmin(d/x,1))
with {
maxDelay = 65536;
i = 1 - pow(2, s/12);
d = i : (+ : +(w) : fmod(_,w)) ~ _;
};
//////////////////////////////////Deprecated Functions////////////////////////////////////
// This section implements functions that used to be in music.lib but that are now
// considered as "deprecated".
//////////////////////////////////////////////////////////////////////////////////////////
echo1s = vgroup("echo 1000", +~(de.delay(65536, int(hslider("millisecond", 0, 0, 1000, 0.10)*ba.millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo2s = vgroup("echo 2000", +~(de.delay(131072, int(hslider("millisecond", 0, 0, 2000, 0.25)*ba.millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo5s = vgroup("echo 5000", +~(de.delay(262144, int(hslider("millisecond", 0, 0, 5000, 0.50)*ba.millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo10s = vgroup("echo 10000", +~(de.delay(524288, int(hslider("millisecond", 0, 0, 10000, 1.00)*ba.millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo21s = vgroup("echo 21000", +~(de.delay(1048576, int(hslider("millisecond", 0, 0, 21000, 1.00)*ba.millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo43s = vgroup("echo 43000", +~(de.delay(2097152, int(hslider("millisecond", 0, 0, 43000, 1.00)*ba.millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));