forked from grame-cncm/faustlibraries
-
Notifications
You must be signed in to change notification settings - Fork 0
/
signals.lib
334 lines (305 loc) · 10.9 KB
/
signals.lib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
//#################################### signals.lib ########################################
// A library of basic elements to handle signals in Faust. Its official prefix is `si`.
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file, GRAME section
Except where noted otherwise, Copyright (C) 2003-2017 by GRAME,
Centre National de Creation Musicale.
----------------------------------------------------------------------
GRAME LICENSE
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ba = library("basics.lib");
ro = library("routes.lib");
ma = library("maths.lib");
si = library("signals.lib");
declare name "Faust Signal Routing Library";
declare version "0.0";
//=============================Functions Reference========================================
//========================================================================================
//--------------------------------`(si.)bus`-------------------------------------
// Put n cables in parallel.
// `bus` is a standard Faust function.
//
// #### Usage
//
// ```
// bus(N)
// bus(4) : _,_,_,_
// ```
//
// Where:
//
// * `N`: is an integer known at compile time that indicates the number of parallel cables
//-----------------------------------------------------------------------------
bus(2) = _,_; // avoids a lot of "bus(1)" labels in block diagrams
bus(n) = par(i, n, _);
//--------------`(si.)block`--------------
// Block - terminate N signals.
// `block` is a standard Faust function.
//
// #### Usage
//
// ```
// _,_,... : block(n) : _,...
// ```
//
// Where:
//
// * `N`: the number of signals to be blocked known at compile time
//--------------------------------------
block(n) = par(i, n, !);
//-----------------------------`(si.)interpolate`-------------------------------
// Linear interpolation between two signals.
//
// #### Usage
//
// ```
// _,_ : interpolate(i) : _
// ```
//
// Where:
//
// * `i`: interpolation control between 0 and 1 (0: first input; 1: second input)
//-----------------------------------------------------------------------------
interpolate(i,x,y) = x + i*(y-x);
//------------------------`(si.)smoo`---------------------------------------
// Smoothing function based on `smooth` ideal to smooth UI signals
// (sliders, etc.) down. Approximately, this is a 7 Hz one-pole
// low-pass considering the coefficient calculation:
// exp(-2pi*CF/SR).
//
// `smoo` is a standard Faust function.
//
// #### Usage
//
// ```
// hslider(...) : smoo;
// ```
//---------------------------------------------------------------------
smoo = si.smooth(1 - 44.1 / ma.SR);
//-----------------------`(si.)polySmooth`--------------------------------
// A smoothing function based on `smooth` that doesn't smooth when a
// trigger signal is given. This is very useful when making
// polyphonic synthesizer to make sure that the value of the parameter
// is the right one when the note is started.
//
// #### Usage
//
// ```
// hslider(...) : si.polySmooth(g,s,d) : _
// ```
//
// Where:
//
// * `g`: the gate/trigger signal used when making polyphonic synths
// * `s`: the smoothness (see `smooth`)
// * `d`: the number of samples to wait before the signal start being
// smoothed after `g` switched to 1
//-------------------------------------------------------------------
polySmooth(g,s,d) = si.smooth(s*((g==(g@d)) | (g == 0)));
//-----------------------`(si.)smoothAndH`--------------------------------
// A smoothing function based on `smooth` that holds its output
// signal when a trigger is sent to it. This feature is convenient
// when implementing polyphonic instruments to prevent some
// smoothed parameter to change when a note-off event is sent.
//
// #### Usage
//
// ```
// hslider(...) : smoothAndH(g,s) : _
// ```
//
// Where:
//
// * `g`: the hold signal (0 for hold, 1 for bypass)
// * `s`: the smoothness (see `smooth`)
//-------------------------------------------------------------------
smoothAndH(t,s) = si.smooth(s*t) : ba.sAndH(t);
//-----------------------------`(si.)bsmooth`------------------------------
// Block smooth linear interpolation during a block of samples.
//
// #### Usage
//
// ```
// hslider(...) : bsmooth : _
// ```
//-----------------------------------------------------------------------
bsmooth(c) = +(i) ~ _
with {
i = (c-c@n)/n;
n = min(4096, max(1, ma.BS));
};
//-------------------------------`(si.)dot`--------------------------------------
// Dot product for two vectors of size N.
//
// #### Usage
//
// ```
// _,_,_,_,_,_ : dot(N) : _
// ```
//
// Where:
//
// * `N`: size of the vectors (int, must be known at compile time)
//-----------------------------------------------------------------------------
dot(N) = ro.interleave(N,2) : par(i,N,*) :> _;
// end GRAME section
//########################################################################################
/************************************************************************
FAUST library file, jos section
Except where noted otherwise, The Faust functions below in this
section are Copyright (C) 2003-2017 by Julius O. Smith III <[email protected]>
([jos](http://ccrma.stanford.edu/~jos/)), and released under the
(MIT-style) [STK-4.3](#stk-4.3-license) license.
All MarkDown comments in this section are Copyright 2016-2017 by Romain
Michon and Julius O. Smith III, and are released under the
[CCA4I](https://creativecommons.org/licenses/by/4.0/) license (TODO: if/when Romain agrees!)
************************************************************************/
//-------------------`(si.)smooth`-----------------------------------
// Exponential smoothing by a unity-dc-gain one-pole lowpass.
// `smooth` is a standard Faust function.
//
// #### Usage:
//
// ```
// _ : si.smooth(ba.tau2pole(tau)) : _
// ```
//
// Where:
//
// * `tau`: desired smoothing time constant in seconds, or
//
// ```
// hslider(...) : si.smooth(s) : _
// ```
//
// Where:
//
// * `s`: smoothness between 0 and 1. s=0 for no smoothing, s=0.999 is "very smooth",
// s>1 is unstable, and s=1 yields the zero signal for all inputs.
// The exponential time-constant is approximately 1/(1-s) samples, when s is close to
// (but less than) 1.
//
// #### Reference:
//
// <https://ccrma.stanford.edu/~jos/mdft/Convolution_Example_2_ADSR.html>
//-------------------------------------------------------------
smooth(s) = *(1.0 - s) : + ~ *(s);
//--------------------------------`(si.)cbus`-------------------------------------
// n parallel cables for complex signals.
// `cbus` is a standard Faust function.
//
// #### Usage
//
// ```
// cbus(n)
// cbus(4) : (r0,i0), (r1,i1), (r2,i2), (r3,i3)
// ```
//
// Where:
//
// * `n`: is an integer known at compile time that indicates the number of parallel cables.
// * each complex number is represented by two real signals as (real,imag)
//-----------------------------------------------------------------------------
cbus(1) = (_,_);
cbus(n) = par(i, n, (_,_));
//--------------------------------`(si.)cmul`-------------------------------------
// multiply two complex signals pointwise.
// `cmul` is a standard Faust function.
//
// #### Usage
//
// ```
// (r1,i1) : cmul(r2,i2) : (_,_);
// ```
//
// Where:
//
// * Each complex number is represented by two real signals as (real,imag), so
// - `(r1,i1)` = real and imaginary parts of signal 1
// - `(r2,i2)` = real and imaginary parts of signal 2
//-----------------------------------------------------------------------------
cmul(r1,i1,r2,i2) = (r1*r2 - i1*i2), (r1*i2 + r2*i1);
//--------------------------------`(si.)cconj`-------------------------------------
// complex conjugation of a (complex) signal.
// `cconj` is a standard Faust function.
//
// #### Usage
//
// ```
// (r1,i1) : cconj : (_,_);
// ```
//
// Where:
//
// * Each complex number is represented by two real signals as (real,imag), so
// - `(r1,i1)` = real and imaginary parts of the input signal
// - `(r1,-i1)` = real and imaginary parts of the output signal
//-----------------------------------------------------------------------------
cconj = _, *(-1);
// end jos section
/************************************************************************
FAUST library file, further contributions section
All contributions below should indicate both the contributor and terms
of license. If no such indication is found, "git blame" will say who
last edited each line, and that person can be emailed to inquire about
license disposition, if their license choice is not already indicated
elsewhere among the libraries. It is expected that all software will be
released under LGPL, STK-4.3, MIT, BSD, or a similar FOSS license.
************************************************************************/
//-------------`(si.)lag_ud`---------------
// Lag filter with separate times for up and down.
//
// #### Usage
//
// ```
// _ : lag_ud(up, dn) : _;
// ```
//----------------------------------------------------
// Author: Jonatan Liljedahl
// License: STK-4.3
// MarkDown: Romain Michon
lag_ud(up,dn) = _ <: ((>,ba.tau2pole(up),ba.tau2pole(dn):select2),_:si.smooth) ~ _;
// end further further contributions section
//-------------`(si.)rev`---------------
// Reverse the input signal by blocks of N>0 samples. `rev(1)` is the indentity
// function. `rev(N)` has a latency of `N-1` samples.
//
// #### Usage
//
// ```
// _ : rev(N) : _;
// ```
//
// Where:
//
// * `N`: the block size
//----------------------------------------------------
// Author: Yann Orlarey
rev(N) = @(phase(N)*2)
with {
phase(n) = 1 : (+ : %(n)) ~ _ : max(0) : min(n-1);
};