Skip to content

Latest commit

 

History

History
33 lines (17 loc) · 993 Bytes

README.md

File metadata and controls

33 lines (17 loc) · 993 Bytes

DeepRigidRegistration

test the deep learning for rigid registration

the folder of data contains 100 images (about 5 M)

Run: python main.py

I use the CNN to predict the rotation angle. However, the loss is very large:

iteration: 1476 || loss = 0.102 || error (degree) = 49.990

iteration: 1477 || loss = 0.077 || error (degree) = 42.407

iteration: 1478 || loss = 0.075 || error (degree) = 45.109

iteration: 1479 || loss = 0.015 || error (degree) = 17.671

iteration: 1480 || loss = 0.039 || error (degree) = 31.031

iteration: 1481 || loss = 0.034 || error (degree) = 25.559

iteration: 1482 || loss = 0.086 || error (degree) = 48.926

iteration: 1483 || loss = 0.043 || error (degree) = 32.719

iteration: 1484 || loss = 0.051 || error (degree) = 32.231

iteration: 1485 || loss = 0.101 || error (degree) = 48.668

iteration: 1486 || loss = 0.043 || error (degree) = 31.668

The error is: abs(pred_rotation_angle - true_rotation_angle). The error is very large.