forked from elliewith/XOmiVAE
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdisentanglingFunctions.py
99 lines (85 loc) · 4.66 KB
/
disentanglingFunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import generalHelperFunctions as helper
import numpy as np
from exprVAEwithAdditionalFeatures import ExprOmiVAE
import generalHelperFunctions as GeneralHelper
import shapExplainerHelper as ShapHelper
import disentanglingBarChartPlots as barChartHelper
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from matplotlib.colors import LogNorm
def disentanglingFunctions(sample_id,label_array,fullTsnePlot=False, subtypeTsne=False,
dimensionstandardDevs=False, heatmaps=False,brcaBarCharts=True,traverseLatentSpace=False):
vae_model = ExprOmiVAE.VAE()
if fullTsnePlot:
"""
#method to load and save latent space if required
expr_tensor = GeneralHelper.addToTensor(expr_df, device)
vae_model.load_state_dict(torch.load('data/beta15.pt', map_location=torch.device('cpu')))
ShapHelper.saveLatentSpace(vae_model, expr_tensor)
"""
z = np.genfromtxt('data/z_before_supervised_normalvae_32.csv')
y = label_array
GeneralHelper.plotLatentSpaceTCGATsne(latentSpace=z, labels=y)
if subtypeTsne:
Basal, LumB = GeneralHelper.processSubtypeSamples(sample_id, subtypeOne="Basal",subtypeTwo="LumB")
LumA, Her2 = GeneralHelper.processSubtypeSamples(sample_id,subtypeOne="LumA",subtypeTwo="Her2")
#Get normal BRCA tissue for comaprison in t-SNE
phenotype = GeneralHelper.processPhenotypeDataForSamples(sample_id)
conditionone = phenotype['sample_type'] == "Solid Tissue Normal"
conditiontwo = phenotype['project_id'] == "TCGA-BRCA"
normal = np.logical_and(conditionone, conditiontwo)
combined = np.logical_or.reduce(Basal, LumB, LumA, Her2,normal)
z = np.genfromtxt('data/mean_unsup_32_BETA1pt2_KLanneal_klstart30_annealtime15.csv')
subtype_z = z[combined]
# Loading label
input_path = "input_path = 'data/GDC-PANCAN_"
label = pd.read_csv(input_path + 'both_samples_tumour_type_digit.tsv', sep='\t', header=0, index_col=0)
label_array = label['tumour_type'].to_numpy()
#Number the subtypes (different to normal labels)
label_array[LumB] = 100
label_array[Basal] = 101
label_array[LumA] = 102
label_array[Her2] = 103
label_array = label_array[combined]
y = label_array
GeneralHelper.plotLatentSpaceTCGATsne(latentSpace=subtype_z, labels=y)
#Get the samples either side of the distribution as a measure of disentanglement
if dimensionstandardDevs:
label = pd.read_csv(input_path + 'both_samples_tumour_type_digit.tsv', sep='\t', header=0, index_col=0)
label_array = label['tumour_type'].to_numpy()
z = np.genfromtxt('data/z_before_supervised_32_KLaneaupto2.3KLLOSS14(notopt).csv')
phenotype = GeneralHelper.processPhenotypeDataForSamples(sample_id)
conditionone = phenotype['sample_type'] == "Solid Tissue Normal"
conditiontwo = phenotype['project_id'] == "TCGA-BRCA"
conditionthree = phenotype['project_id'] == "Primary Tumor"
combined=np.logical_and.reduce(conditionone, conditiontwo,conditionthree)
selected_z = z[normal]
label_array[normal] = 4
label_array = label_array[combined]
barChartHelper.compute_diff_capacity_latent_dim(selected_z, subtype_z, label_array,
"CellDifferentiationKidneyKLaneaupto2.pt3NOAbs")
# Disentangling assessment method
if heatmaps:
cancer = label_array == 3
allElse = label_array != 3
z = np.genfromtxt('data/z_before_supervised_dim32_beta10.csv')
cancer_z = z[cancer]
allElse_z = z[allElse]
statistics = stats.ttest_ind(cancer_z, allElse_z, axis=0, equal_var=False, nan_policy='propagate')
pvalue = statistics.pvalue
# make sure there are no zero values in array- here just set to average
pvalue[pvalue == 0] = 1.62916828e-001
sns.set()
# 4.55993791e-270, 0.001
log_norm = LogNorm(vmin=4.6e-265, vmax=1.0e-001)
ax = sns.heatmap([pvalue], norm=log_norm, cbar_kws={"ticks": [0, 1, 10, 1e2, 1e3, 1e4, 1e5]})
plt.show()
ShapHelper.saveMostStatisticallySignificantIndex(cancer, allElse, 'data/cancer_z.csv', 'data/normal_z.csv', z)
if brcaBarCharts:
label = pd.read_csv(input_path + 'both_samples_tumour_type_digit.tsv', sep='\t', header=0, index_col=0)
label_array = label['tumour_type'].to_numpy()
all_z = np.genfromtxt('data/z_before_supervised_loss_32_cap20_beta10_lossclimbedto5noAnneal.csv')
barChartHelper.compute_diff_capacity_latent_dimBRCA(all_z, all_z, label_array, "Bargraphs_BRCA_vs_NormalTest")