-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathray.c
141 lines (128 loc) · 4.35 KB
/
ray.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include "vector.h"
#include "ray.h"
//Ray at given t. Returns the point wherever the ray points to.
vector ray_at(ray v, double t) {
vector u = add_vect(v.orig, mult_const(v.dir, t));
return u;
}
/* -- How sphere works --
* Formula for a sphere of radius r, centered at C(Cx, Cy, Cz) is
* (x - Cx)^2 + (y - Cy)^2 + (z - Cz)^2 = r^2
*
* This can be expressed with dot product of arbitrary point P(x, y, z) and the center C(Cx, Cy, Cz)
* (x - Cx)^2 + (y - Cy)^2 + (z - Cz)^2
* = (x - Cx)*(x - Cx) + (y - Cy)*(y - Cy) + (z - Cz)*(z - Cz)
* = (P - C)・(P - C)
* = r^2
*
* P is the point where a ray hits. There has to be a t to express P using vector.
* V is a direction vector.
* b is where V is shooting from.
* P(t) = tV + b. P is t's function, so it should be P(t) instead of P.
*
* (P - C)・(P - C) = (P(t) - C)・(P(t) - C)
* Expand P(t)
* (P(t) - C)・(P(t) - C)
* = (tV + (b - C))・(tV + (b - C)) Group b and - C.
* = r^2
*
* Expand the entire expression & move r^2 to the left side.
* t^2 V・V + 2t(b - C)・V + (b - C)・(b - C) - r^2 = 0
*
* It's a quadratic formula of t. Use determinant to see if there is a answer for t.
* If so, ray hits sphere. Return one of the answer.
* We aren't going to see backside anyways, We only need the one comes in front.
*/
double sphere(vector const centre, double const radius, ray const r) {
vector distance = subtract_vect(r.orig, centre);
double a = dot(r.dir, r.dir);
double b = 2 * (dot(r.dir, distance));
double c = dot(distance, distance) - radius * radius;
double discriminant = b*b - 4*a*c;
if (discriminant < 0) {
return -1.0;
} else {
return (-b - sqrt(discriminant)) / (2.0 * a);
}
}
vector shootRay(ray v, int depth) {
// Adding a limit to how many times the ray are allowed to reflect.
if (depth < 1) {
vector col;
fill_value(&col, 1, 1, 1);
return col;
}
vector sphere1;
fill_value(&sphere1, 0, 0, -1.0); //Center
double t = sphere(sphere1, 0.5, v); //Center position, radius, and target ray
if (t > 0.0) { //If the ray hits sphere,
vector n = unit_vec(subtract_vect(ray_at(v, t), sphere1));
/*
* Color the sphere based on direction of normal vector(-1 < x, y, z < 1).
* When x, y, and z is positive, the surface appears brighter.
* When x, y, and z is negative, the surface appears darker.
*/
vector col = add_const(n, 1);
return col; //Return when ray hits object.
}
// Reflective sphere
vector sphere2;
fill_value(&sphere2, 1, 0.5, -1.5);//Center
t = sphere(sphere2, 0.5, v);
if (t > 0.0) {
vector n = unit_vec(subtract_vect(ray_at(v, t), sphere2));
//Create a Ray shooting from where original ray hits in the direction of normal vector.
//This is inaccurate but accurate enough for humans.
ray nRay;
nRay.orig = ray_at(v, t);
nRay.dir = n;
//Determine the color of the point using recursion.
vector col = shootRay(nRay, depth - 1);
return col;
}
// Reflective sphere
vector sphere3;
fill_value(&sphere3, -1.5, 0.5, -0.5);//Center
t = sphere(sphere3, 0.8, v);
if (t > 0.0) {
vector n = unit_vec(subtract_vect(ray_at(v, t), sphere3));
ray nRay;
nRay.orig = ray_at(v, t);
nRay.dir = n;
vector col = shootRay(nRay, depth - 1);
return col;
}
//Ground
vector ground;
fill_value(&ground, 0, -100.5, 0);
t = sphere(ground, 100, v);
if (t > 0.0) {
vector n = unit_vec(subtract_vect(ray_at(v, t), ground));
vector col;
//Add checker pattern based on normal vector's direction. Given direction times 1000 and see if that is odd or even.
//Increase the number multiplied to direction make the grid finer.
if ((int)(n.x * 1000) % 2 == 0 && (int)(n.z * 1000) % 2 == 0) {
fill_value(&col, 1, 1, 1);
} else if ((int)(n.x * 1000 + 1) % 2 == 0 && (int)(n.z * 1000 + 1) % 2 == 0) {
fill_value(&col, 1, 1, 1);
} else {
fill_value(&col, 0, 0, 0);
}
return col;
}
//Add sky with gradient based on ray's y value.
/*vector unitDir = unit_vec(v.dir); //-1 <= y <= 1
t = unitDir.y + 1; // 0 <= y <= 2
vector col1;
fill_value(&col1, 1.0, 1.0, 1.0);
vector col2;
fill_value(&col2, 0.5, 0.7, 1.0);
return add_vect(mult_const(col1, (2 - t)), mult_const(col2, t));*/
vector col1;
fill_value(&col1, 0, 0, 0);
return col1;
}