-
Notifications
You must be signed in to change notification settings - Fork 13
/
train_teacher.py
206 lines (166 loc) · 8.64 KB
/
train_teacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from __future__ import print_function
import argparse
import os
import time
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
from dataset.cifar100 import get_cifar100_dataloaders
from dataset.imagenet import get_imagenet_dataloader, imagenet_list
from helper.loops import train_vanilla as train
from helper.loops import validate
from helper.util import (AverageMeter, accuracy, adjust_learning_rate,
parser_config_save, reduce_tensor, save_dict_to_json)
from models import model_dict
def parse_option():
parser = argparse.ArgumentParser('argument for training')
# baisc
parser.add_argument('--print-freq', type=int, default=200, help='print frequency')
parser.add_argument('--save_freq', type=int, default=40, help='save frequency')
parser.add_argument('--batch_size', type=int, default=64, help='batch_size')
parser.add_argument('--num_workers', type=int, default=8, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=240, help='number of training epochs')
parser.add_argument('--gpu_id', type=str, default='0', help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--experiments_dir', type=str, default='models',help='Directory name to save the model, log, config')
parser.add_argument('--experiments_name', type=str, default='baseline')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.05, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='150,180,210', help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
# dataset
parser.add_argument('--model', type=str, default='resnet110',
choices=['resnet8', 'resnet14', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110', 'ResNet18', 'ResNet34',
'resnet8x4', 'resnet32x4', 'wrn_16_1', 'wrn_16_2', 'wrn_40_1', 'wrn_40_2',
'vgg8', 'vgg11', 'vgg13', 'vgg16', 'vgg19',
'MobileNetV2', 'ShuffleV1', 'ShuffleV2','ResNet50' ])
parser.add_argument('--dataset', type=str, default='cifar100', choices=['cifar100', 'imagenet', 'imagenette'], help='dataset')
# multiprocessing
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:23451', type=str,
help='url used to set up distributed training')
opt = parser.parse_args()
# set different learning rate from these 4 models
if opt.model in ['MobileNetV2', 'ShuffleV1', 'ShuffleV2']:
opt.learning_rate = 0.01
# set the path of model
opt.model_path = './save/models'
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
opt.model_name = os.path.join(opt.experiments_dir, opt.experiments_name)
opt.save_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
parser_config_save(opt, opt.save_folder)
return opt
best_acc = 0
total_time = time.time()
def main():
opt = parse_option()
# ASSIGN CUDA_ID
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_id
ngpus_per_node = torch.cuda.device_count()
opt.ngpus_per_node = ngpus_per_node
if opt.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
world_size = 1
opt.world_size = ngpus_per_node * world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, opt))
else:
main_worker(None if ngpus_per_node > 1 else opt.gpu_id, ngpus_per_node, opt)
def main_worker(gpu, ngpus_per_node, opt):
global best_acc, total_time
opt.gpu = int(gpu)
opt.gpu_id = int(gpu)
if opt.gpu is not None:
print("Use GPU: {} for training".format(opt.gpu))
if opt.multiprocessing_distributed:
# Only one node now.
opt.rank = int(gpu)
dist_backend = 'nccl'
dist.init_process_group(backend=dist_backend, init_method=opt.dist_url,
world_size=opt.world_size, rank=opt.rank)
# model
n_cls = {
'cifar100': 100,
'imagenet': 1000,
'imagenette': 10,
}.get(opt.dataset, None)
model = model_dict[opt.model](num_classes=n_cls)
# optimizer
optimizer = optim.SGD(model.parameters(),
lr=opt.learning_rate,
momentum=opt.momentum,
weight_decay=opt.weight_decay)
criterion = nn.CrossEntropyLoss().cuda()
if torch.cuda.is_available():
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if opt.multiprocessing_distributed:
if opt.gpu is not None:
torch.cuda.set_device(opt.gpu)
model.cuda(opt.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
opt.batch_size = int(opt.batch_size / ngpus_per_node)
opt.num_workers = int((opt.num_workers + ngpus_per_node - 1) / ngpus_per_node)
DDP = torch.nn.parallel.DistributedDataParallel
model = DDP(model, device_ids=[opt.gpu])
else:
print('multiprocessing_distributed must be with a specifiec gpu id')
else:
criterion = criterion.cuda()
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model, device_ids=opt.gpu_id).cuda()
else:
model = model.cuda()
cudnn.benchmark = True
# dataloader
if opt.dataset == 'cifar100':
train_loader, val_loader = get_cifar100_dataloaders(batch_size=opt.batch_size, num_workers=opt.num_workers)
elif opt.dataset in imagenet_list:
train_loader, val_loader, train_sampler = get_imagenet_dataloader(
dataset = opt.dataset,
batch_size=opt.batch_size, num_workers=opt.num_workers,
multiprocessing_distributed=opt.multiprocessing_distributed)
else:
raise NotImplementedError(opt.dataset)
# routine
for epoch in range(1, opt.epochs + 1):
if opt.multiprocessing_distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(epoch, opt, optimizer)
print("==> training...")
train_acc, train_acc_top5, train_loss = train(epoch, train_loader, model, criterion, optimizer, opt)
if opt.multiprocessing_distributed:
metrics = torch.tensor([train_acc, train_acc_top5, train_loss]).cuda(opt.gpu, non_blocking=True)
reduced = reduce_tensor(metrics, opt.world_size if 'world_size' in opt else 1)
train_acc, train_acc_top5, train_loss = reduced.tolist()
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
print(' * Epoch {}, Acc@1 {:.3f}, Acc@5 {:.3f}'.format(epoch, train_acc, train_acc_top5))
test_acc, test_acc_top5, test_loss = validate(val_loader, model, criterion, opt)
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
print(' ** Acc@1 {:.3f}, Acc@5 {:.3f}'.format(test_acc, test_acc_top5))
test_merics = {
'test_loss': test_loss,
'test_acc': test_acc,
'test_acc_top5': test_acc_top5,
'epoch': epoch}
save_dict_to_json(test_merics, os.path.join(opt.save_folder, "test_best_metrics.json"))
if __name__ == '__main__':
main()