forked from KaiyangZhou/Dassl.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
adabn.py
38 lines (27 loc) · 986 Bytes
/
adabn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
from dassl.utils import check_isfile
from dassl.engine import TRAINER_REGISTRY, TrainerXU
@TRAINER_REGISTRY.register()
class AdaBN(TrainerXU):
"""Adaptive Batch Normalization.
https://arxiv.org/abs/1603.04779.
"""
def __init__(self, cfg):
super().__init__(cfg)
self.done_reset_bn_stats = False
def check_cfg(self, cfg):
assert check_isfile(
cfg.MODEL.INIT_WEIGHTS
), 'The weights of source model must be provided'
def before_epoch(self):
if not self.done_reset_bn_stats:
for m in self.model.modules():
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
m.reset_running_stats()
self.done_reset_bn_stats = True
def forward_backward(self, batch_x, batch_u):
input_u = batch_u['img'].to(self.device)
with torch.no_grad():
self.model(input_u)
return None