-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
290 lines (243 loc) · 9.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import argparse
import torch
import numpy as np
# Import from dassl
from dassl.utils import setup_logger, set_random_seed, collect_env_info
from dassl.config import get_cfg_default
from dassl.engine import build_trainer
# Dataset config files
import datasets.oxford_pets
import datasets.oxford_flowers
import datasets.fgvc_aircraft
import datasets.dtd
import datasets.eurosat
import datasets.stanford_cars
import datasets.food101
import datasets.sun397
import datasets.caltech101
import datasets.ucf101
import datasets.imagenet
import datasets.imagenet_sketch
import datasets.imagenetv2
import datasets.imagenet_a
import datasets.imagenet_r
# Trainer config files
import trainers.coop
import trainers.cocoop
import trainers.zsclip
import trainers.maple
import trainers.independentVL
import trainers.promptsrc
import trainers.zs_en
import trainers.trainingfree_en
import trainers.tune_en
import trainers.baseline_en
def print_args(args, cfg):
print("***************")
print("** Arguments **")
print("***************")
optkeys = list(args.__dict__.keys())
optkeys.sort()
for key in optkeys:
print("{}: {}".format(key, args.__dict__[key]))
print("************")
print("** Config **")
print("************")
print(cfg)
def reset_cfg(cfg, args):
if args.root:
cfg.DATASET.ROOT = args.root
if args.output_dir:
cfg.OUTPUT_DIR = args.output_dir
if args.resume:
cfg.RESUME = args.resume
if args.seed:
cfg.SEED = args.seed
if args.source_domains:
cfg.DATASET.SOURCE_DOMAINS = args.source_domains
if args.target_domains:
cfg.DATASET.TARGET_DOMAINS = args.target_domains
if args.transforms:
cfg.INPUT.TRANSFORMS = args.transforms
if args.trainer:
cfg.TRAINER.NAME = args.trainer
if args.backbone:
cfg.MODEL.BACKBONE.NAME = args.backbone
if args.head:
cfg.MODEL.HEAD.NAME = args.head
def extend_cfg(cfg):
"""
Add new config variables.
E.g.
from yacs.config import CfgNode as CN
cfg.TRAINER.MY_MODEL = CN()
cfg.TRAINER.MY_MODEL.PARAM_A = 1.
cfg.TRAINER.MY_MODEL.PARAM_B = 0.5
cfg.TRAINER.MY_MODEL.PARAM_C = False
"""
from yacs.config import CfgNode as CN
cfg.TRAINER.COOP = CN()
cfg.TRAINER.COOP.N_CTX = 16 # number of context vectors
cfg.TRAINER.COOP.CSC = False # class-specific context
cfg.TRAINER.COOP.CTX_INIT = "" # initialization words
cfg.TRAINER.COOP.PREC = "fp16" # fp16, fp32, amp
cfg.TRAINER.COOP.CLASS_TOKEN_POSITION = "end" # 'middle' or 'end' or 'front'
cfg.TRAINER.COCOOP = CN()
cfg.TRAINER.COCOOP.N_CTX = 4 # number of context vectors
cfg.TRAINER.COCOOP.CTX_INIT = "" # initialization words
cfg.TRAINER.COCOOP.PREC = "fp16" # fp16, fp32, amp
# Config for MaPLe
cfg.TRAINER.MAPLE = CN()
cfg.TRAINER.MAPLE.N_CTX = 2 # number of context vectors
cfg.TRAINER.MAPLE.CTX_INIT = "a photo of a" # initialization words
cfg.TRAINER.MAPLE.PREC = "fp16" # fp16, fp32, amp
cfg.TRAINER.MAPLE.PROMPT_DEPTH = 9 # Max 12, minimum 0, for 1 it will act as shallow MaPLe (J=1)
cfg.DATASET.SUBSAMPLE_CLASSES = "all" # all, base or new
# Config for PromptSRC
cfg.TRAINER.PROMPTSRC = CN()
cfg.TRAINER.PROMPTSRC.N_CTX_VISION = 4 # number of context vectors at the vision branch
cfg.TRAINER.PROMPTSRC.N_CTX_TEXT = 4 # number of context vectors at the language branch
cfg.TRAINER.PROMPTSRC.CTX_INIT = "a photo of a" # initialization words
cfg.TRAINER.PROMPTSRC.PREC = "fp16" # fp16, fp32, amp
cfg.TRAINER.PROMPTSRC.PROMPT_DEPTH_VISION = 9 # Max 12, minimum 0, for 0 it will be using shallow IVLP prompting (J=1)
cfg.TRAINER.PROMPTSRC.PROMPT_DEPTH_TEXT = 9 # Max 12, minimum 0, for 0 it will be using shallow IVLP prompting (J=1)
cfg.TRAINER.PROMPTSRC.TEXT_LOSS_WEIGHT = 25
cfg.TRAINER.PROMPTSRC.IMAGE_LOSS_WEIGHT = 10
cfg.TRAINER.PROMPTSRC.GPA_MEAN = 15
cfg.TRAINER.PROMPTSRC.GPA_STD = 1
# Config for independent Vision Language prompting (independent-vlp)
cfg.TRAINER.IVLP = CN()
cfg.TRAINER.IVLP.N_CTX_VISION = 2 # number of context vectors at the vision branch
cfg.TRAINER.IVLP.N_CTX_TEXT = 2 # number of context vectors at the language branch
cfg.TRAINER.IVLP.CTX_INIT = "a photo of a" # initialization words (only for language prompts)
cfg.TRAINER.IVLP.PREC = "fp16" # fp16, fp32, amp
# If both variables below are set to 0, 0, will the config will degenerate to COOP model
cfg.TRAINER.IVLP.PROMPT_DEPTH_VISION = 9 # Max 12, minimum 0, for 0 it will act as shallow IVLP prompting (J=1)
cfg.TRAINER.IVLP.PROMPT_DEPTH_TEXT = 9 # Max 12, minimum 0, for 0 it will act as shallow IVLP prompting(J=1)
# Config for Ensemble Learning
cfg.TRAINER.ENLEARN = CN()
cfg.TRAINER.ENLEARN.WEIGHTS_SEARCH = False # search for weights
cfg.TRAINER.ENLEARN.SEARCH_EVAL = False # evaluate search results
cfg.TRAINER.ENLEARN.WEIGHT_RN50 = 1.0 # weight for RN50
cfg.TRAINER.ENLEARN.WEIGHT_RN101 = 1.0 # weight for RN101
cfg.TRAINER.ENLEARN.WEIGHT_VIT32 = 1.0 # weight for ViT32
cfg.TRAINER.ENLEARN.WEIGHT_VIT16 = 1.0 # weight for ViT16
cfg.TRAINER.ENLEARN.PREC = "fp16" # fp16, fp32, amp
cfg.TRAINER.ENLEARN.DOWNSCALE = 32 # downscale factor for weight generator
cfg.TRAINER.ENLEARN.NUM_WEIGHT = 4 # number of weights to generate
cfg.TRAINER.ENLEARN.MODEL_DIR = "" # model directory for individual models
def setup_cfg(args):
cfg = get_cfg_default()
extend_cfg(cfg)
# 1. From the dataset config file
if args.dataset_config_file:
cfg.merge_from_file(args.dataset_config_file)
# 2. From the method config file
if args.config_file:
cfg.merge_from_file(args.config_file)
# 3. From input arguments
reset_cfg(cfg, args)
# 4. From optional input arguments
cfg.merge_from_list(args.opts)
# cfg.freeze()
return cfg
def main(args):
cfg = setup_cfg(args)
if cfg.SEED >= 0:
print("Setting fixed seed: {}".format(cfg.SEED))
set_random_seed(cfg.SEED)
setup_logger(cfg.OUTPUT_DIR)
if torch.cuda.is_available() and cfg.USE_CUDA:
torch.backends.cudnn.benchmark = True
print_args(args, cfg)
print("Collecting env info ...")
print("** System info **\n{}\n".format(collect_env_info()))
trainer = build_trainer(cfg)
if args.eval_only:
trainer.load_model(args.model_dir, epoch=args.load_epoch)
if cfg.TRAINER.ENLEARN.WEIGHTS_SEARCH:
max_acc = 0.0
for i in np.arange(0.1, 1.0, 0.1):
for j in np.arange(0.1, 1.0, 0.1):
for k in np.arange(0.1, 1.0, 0.1):
acc, weights = trainer.test_search(
split="train", w1=i, w2=j, w3=k
)
if acc > max_acc:
max_acc = acc
max_weights = weights
print(f"Max Acc: {max_acc}, weights: {max_weights}")
print(f"Final results: Max Acc: {max_acc}, weights: {max_weights}")
trainer.test_search(
split="test",
w1=max_weights[0],
w2=max_weights[1],
w3=max_weights[2]
)
elif cfg.TRAINER.ENLEARN.SEARCH_EVAL:
trainer.test_search(
split="test",
w1=cfg.TRAINER.ENLEARN.WEIGHT_RN50,
w2=cfg.TRAINER.ENLEARN.WEIGHT_RN101,
w3=cfg.TRAINER.ENLEARN.WEIGHT_VIT32
)
else:
trainer.test()
return
if not args.no_train:
trainer.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--root", type=str, default="", help="path to dataset")
parser.add_argument("--output-dir", type=str, default="", help="output directory")
parser.add_argument(
"--resume",
type=str,
default="",
help="checkpoint directory (from which the training resumes)",
)
parser.add_argument(
"--seed", type=int, default=-1, help="only positive value enables a fixed seed"
)
parser.add_argument(
"--source-domains", type=str, nargs="+", help="source domains for DA/DG"
)
parser.add_argument(
"--target-domains", type=str, nargs="+", help="target domains for DA/DG"
)
parser.add_argument(
"--transforms", type=str, nargs="+", help="data augmentation methods"
)
parser.add_argument(
"--config-file", type=str, default="", help="path to config file"
)
parser.add_argument(
"--dataset-config-file",
type=str,
default="",
help="path to config file for dataset setup",
)
parser.add_argument("--trainer", type=str, default="", help="name of trainer")
parser.add_argument("--backbone", type=str, default="", help="name of CNN backbone")
parser.add_argument("--head", type=str, default="", help="name of head")
parser.add_argument("--eval-only", action="store_true", help="evaluation only")
parser.add_argument(
"--model-dir",
type=str,
default="",
help="load model from this directory for eval-only mode",
)
parser.add_argument(
"--load-epoch", type=int, help="load model weights at this epoch for evaluation"
)
parser.add_argument(
"--no-train", action="store_true", help="do not call trainer.train()"
)
parser.add_argument(
"opts",
default=None,
nargs=argparse.REMAINDER,
help="modify config options using the command-line",
)
args = parser.parse_args()
main(args)