-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_description_chatgpt4v.py
325 lines (265 loc) · 12.4 KB
/
generate_description_chatgpt4v.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# analyze the image and generate the corresponding prompts
import numpy as np
from PIL import Image
import base64
import requests
import io
import json
import time
land_cover_label = {'land_cover': {
'type': 'segment',
'BackgroundInvalid': True,
'categories': [
'background',
'water', 'developed', 'tree', 'shrub', 'grass',
'crop', 'bare', 'snow', 'wetland', 'mangroves', 'moss',
],
'colors': [
[0, 0, 0], # unknown
[0, 0, 255], # (blue) water
[255, 0, 0], # (red) developed
[0, 192, 0], # (dark green) tree
[200, 170, 120], # (brown) shrub
[0, 255, 0], # (green) grass
[255, 255, 0], # (yellow) crop
[128, 128, 128], # (grey) bare
[255, 255, 255], # (white) snow
[0, 255, 255], # (cyan) wetland
[255, 0, 255], # (pink) mangroves
[128, 0, 128], # (purple) moss
],
}}
labels = land_cover_label['land_cover']['categories']
colors = land_cover_label['land_cover']['colors']
def analyze_segmentation_map(image):
h, w = image.shape
patches = {
"top_left": image[:h//2, :w//2],
"top_right": image[:h//2, w//2:],
"bottom_left": image[h//2:, :w//2],
"bottom_right": image[h//2:, w//2:],
"middle": image[h//4:3*h//4, w//4:3*w//4]
}
analyze_prompt = ""
for name, patch in patches.items():
unique, counts = np.unique(patch, return_counts=True)
proportions = counts / counts.sum()
sorted_indices = np.argsort(-proportions) # Sorting in descending order
statistic_str = f"{name} distribution:"
for idx in sorted_indices:
if unique[idx] == 0:
continue
statistic_str += f" {labels[unique[idx]]}: {proportions[idx]:.2f};"
analyze_prompt += statistic_str
analyze_prompt += '\n'
return analyze_prompt
import numpy as np
from PIL import Image
from collections import Counter
def split_into_patches(image):
h, w = image.shape[:2]
patches = {
"top left part": image[:h//2, :w//2],
"top right part": image[:h//2, w//2:],
"bottom left part": image[h//2:, :w//2],
"bottom right part": image[h//2:, w//2:],
"middle part": image[h//4:h*3//4, w//4:w*3//4]
}
return patches
def count_pixel_proportions(num, land_type, patch):
count = np.count_nonzero(patch == land_type)
proportions = count / (128.*128.)
return proportions
def analyze_image(image):
patches = split_into_patches(image)
all_land_types = Counter(list(image.reshape(-1)))
analyze_prompt = ""
for land_type, num in all_land_types.items():
if land_type == 0:
continue
analyze_prompt += f"{labels[land_type]}: "
for patch_name, patch in patches.items():
proportion = count_pixel_proportions(num, land_type, patch)
analyze_prompt += f" {patch_name}: {proportion:.2%} "
analyze_prompt += '\n'
return analyze_prompt
import numpy as np
def convert_color_map_to_segmentation(color_map, label_colors):
"""
Convert a color map back to a segmentation map with pixel labels from 0 to 7.
Args:
color_map (numpy.ndarray): A 3D array where each element represents the color of a pixel.
label_colors (list): A list of color tuples corresponding to each label.
Returns:
numpy.ndarray: A 2D array representing the segmentation map.
"""
# Initialize an empty segmentation map with the same height and width as the color map
segmentation_map = np.zeros((color_map.shape[0], color_map.shape[1]), dtype=np.uint8)
# Map each color in the color map back to its corresponding label
for label, color in enumerate(label_colors):
# Create a mask where the color matches the current label color
mask = np.all(color_map == color, axis=-1)
# Assign the label to the matching locations in the segmentation map
segmentation_map[mask] = label
return segmentation_map
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def downsample_image(image, skip_index):
"""
Downsample a PIL image by skipping pixels.
Args:
image (PIL.Image.Image): The source image.
skip_index (int): The number of pixels to skip.
Returns:
PIL.Image.Image: The downsampled image.
"""
# Ensure the input is a PIL Image
if not isinstance(image, Image.Image):
raise ValueError("image must be a PIL.Image.Image object")
# Get the size of the original image
width, height = image.size
# Calculate the size of the downsampled image
new_width = (width + skip_index - 1) // skip_index
new_height = (height + skip_index - 1) // skip_index
# Create a new image of the desired size
downsampled_image = Image.new("RGB", (new_width, new_height))
# Copy pixels from the original image to the new image, skipping as appropriate
for y in range(0, height, skip_index):
for x in range(0, width, skip_index):
downsampled_image.putpixel((x // skip_index, y // skip_index), image.getpixel((x, y)))
return downsampled_image
def resize_and_encode_image(image_path):
"""
Resize an image to 128x128 using nearest neighbor interpolation and then encode it to base64.
Args:
image_path (str): The path to the image file.
Returns:
str: A base64 encoded string of the resized image.
"""
# Open the image
with Image.open(image_path) as img:
# Resize the image
#resized_img = img.resize((128, 128), Image.NEAREST)
resized_img = downsample_image(img, 2)
# Save the resized image to a bytes buffer
buffer = io.BytesIO()
resized_img.save(buffer, format=img.format)
# Get the byte data from the buffer
byte_data = buffer.getvalue()
# Encode the byte data to base64
base64_encoded = base64.b64encode(byte_data).decode('utf-8')
return base64_encoded
def generate_captions(image_paths, segmentation_maps):
analyze_prompt1 = analyze_segmentation_map(segmentation_maps[0])
analyze_prompt2 = analyze_segmentation_map(segmentation_maps[1])
analyze_prompt3 = analyze_segmentation_map(segmentation_maps[2])
analyze_prompt4 = analyze_segmentation_map(segmentation_maps[3])
# Example usage
analyze_prompt21 = analyze_image(segmentation_maps[0])
analyze_prompt22 = analyze_image(segmentation_maps[1])
analyze_prompt23 = analyze_image(segmentation_maps[2])
analyze_prompt24 = analyze_image(segmentation_maps[3])
prompt = "You are an AI visual assistant that can analyze the given image. In the image, different colors represent different land cover types.\
The color for the land cover dictionary is: '[0, 0, 255] (blue): water; [255, 0, 0](red): developed area; \
[0, 192, 0] (dark green): tree; [200, 170, 120] (brown): shrub; [0, 255, 0] (green): grass; [255, 255, 0] (yellow): crop;\
[128, 128, 128] (grey): bare; [255, 255, 255] (white): snow; [0, 255, 255] (cyan): wetland; [255, 0, 255] (pink): mangroves; [128, 0, 128] (purple): moss.' You will be provided four independent images at once."
prompt += "For the first image, the distribution of each land cover type is:"
prompt += analyze_prompt21
prompt += "For the first image, the spatial distribution of the image is:"
prompt += analyze_prompt1
prompt += "For the second image, the distribution of each land cover type is:"
prompt += analyze_prompt22
prompt += "For the second image, the spatial distribution of the image is:"
prompt += analyze_prompt2
prompt += "For the third image, the distribution of each land cover type is:"
prompt += analyze_prompt23
prompt += "For the third image, the spatial distribution of the image is:"
prompt += analyze_prompt3
prompt += "For the fourth image, the distribution of each land cover type is:"
prompt += analyze_prompt24
prompt += "For the fourth image, the spatial distribution of the image is:"
prompt += analyze_prompt4
prompt += "You are given four independent images, describe in long sentences for each image seperately using four paragraphs and avoid saying other things.\
The following constraints should be obeyed: \
1) Do not use color-related words; treat the color as the land cover type directly.\
2) Generate the four descriptions seperately; do not add connection between them. \
3) When describing water, developed, and crop areas, incorporate shape descriptors.\
4) Double-check all the presented land cover types based on the distribution of each land cover type. If some land covers are not presented, do not mention them.\
5) Describe it objectively; do not use words: 'possibly','likely','perhaps','color dictionary','appear','change','transition', 'dynamic', or any words with similar connotations.\
6) Double-check the shape and location of the developed area, water course, grass, tree, shrub, wetland, and crop areas based on the given image if they are present.\
7) Consider the spatial statistics as a unified image without breaking them down into individual spatial distributions and land cover proportions when describing the overall scene.\
8) Describe each land cover separately for each given image, and then describe the main theme of each given image."
api_key = "openai api key"
#base64_image = encode_image(image_path)
base64_image1 = resize_and_encode_image(image_paths[0])
base64_image2 = resize_and_encode_image(image_paths[1])
base64_image3 = resize_and_encode_image(image_paths[2])
base64_image4 = resize_and_encode_image(image_paths[3])
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
payload = {
"model": "gpt-4-vision-preview",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt,
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image1}",
},
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image2}",
},
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image3}",
},
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image4}",
},
},
]
}
],
"max_tokens": 1200
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
with open(image_paths[0].replace('png','json'),'w') as jsonf:
json.dump(response.json(),jsonf)
if __name__=='__main__':
with open('chatgpt_4_v.txt','r') as lf:
all_labels = lf.readlines()
for lfile in all_labels:
lfile = lfile.strip()
color_img_path00 = f"{lfile[:-4]}_patch00.png"
color_img_path01 = f"{lfile[:-4]}_patch01.png"
color_img_path10 = f"{lfile[:-4]}_patch10.png"
color_img_path11 = f"{lfile[:-4]}_patch11.png"
im00 = np.array(Image.open(color_img_path00))
im01 = np.array(Image.open(color_img_path01))
im10 = np.array(Image.open(color_img_path10))
im11 = np.array(Image.open(color_img_path11))
seg_map_00 = convert_color_map_to_segmentation(im00, colors)
seg_map_01 = convert_color_map_to_segmentation(im01, colors)
seg_map_10 = convert_color_map_to_segmentation(im10, colors)
seg_map_11 = convert_color_map_to_segmentation(im11, colors)
segmentation_maps = [seg_map_00,seg_map_01,seg_map_10,seg_map_11]
image_paths = [color_img_path00,color_img_path01,color_img_path10,color_img_path11]
generate_captions(image_paths, segmentation_maps)
time.sleep(20)