-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathkfkd.py
412 lines (328 loc) · 12.4 KB
/
kfkd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
"""
To use this script, first run this to fit your first model:
python kfkd.py fit
Then train a bunch of specialists that intiliaze their weights from
your first model:
python kfkd.py fit_specialists net.pickle
Plot their error curves:
python kfkd.py plot_learning_curves net-specialists.pickle
And finally make predictions to submit to Kaggle:
python kfkd.py predict net-specialists.pickle
"""
import cPickle as pickle
from datetime import datetime
import os
import sys
from matplotlib import pyplot
import numpy as np
from lasagne import layers
from nolearn.lasagne import BatchIterator
from nolearn.lasagne import NeuralNet
from pandas import DataFrame
from pandas.io.parsers import read_csv
from sklearn.utils import shuffle
import theano
import cv2
sys.setrecursionlimit(10000) # for pickle...
np.random.seed(42)
Conv2DLayer = layers.cuda_convnet.Conv2DCCLayer
MaxPool2DLayer = layers.cuda_convnet.MaxPool2DCCLayer
FTRAIN = 'training.csv'
FTEST = 'test.csv'
FLOOKUP = 'IdLookupTable.csv'
def float32(k):
return np.cast['float32'](k)
def load(test=False, cols=None):
"""Loads data from FTEST if *test* is True, otherwise from FTRAIN.
Pass a list of *cols* if you're only interested in a subset of the
target columns.
"""
fname = FTEST if test else FTRAIN
df = read_csv(os.path.expanduser(fname)) # load pandas dataframe
# The Image column has pixel values separated by space; convert
# the values to numpy arrays:
df['Image'] = df['Image'].apply(lambda im: np.fromstring(im, sep=' '))
if cols: # get a subset of columns
df = df[list(cols) + ['Image']]
print(df.count()) # prints the number of values for each column
df = df.dropna() # drop all rows that have missing values in them
X = np.vstack(df['Image'].values) / 255. # scale pixel values to [0, 1]
X = X.astype(np.float32)
if not test: # only FTRAIN has any target columns
y = df[df.columns[:-1]].values
y = (y - 48) / 48 # scale target coordinates to [-1, 1]
X, y = shuffle(X, y, random_state=42) # shuffle train data
y = y.astype(np.float32)
else:
y = None
return X, y
def load2d(test=False, cols=None):
X, y = load(test=test, cols=cols)
X = X.reshape(-1, 96, 96, 1)
X = X.transpose(0, 3, 1, 2)
cv2.imshow('facedetect1', X)
return X, y
def plot_sample(x, y, axis):
img = x.reshape(96, 96)
axis.imshow(img, cmap='gray')
if y is not None:
axis.scatter(y[0::2] * 48 + 48, y[1::2] * 48 + 48, marker='x', s=10)
def plot_weights(weights):
fig = pyplot.figure(figsize=(6, 6))
fig.subplots_adjust(
left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)
for i in range(16):
ax = fig.add_subplot(4, 4, i + 1, xticks=[], yticks=[])
ax.imshow(weights[:, i].reshape(96, 96), cmap='gray')
pyplot.show()
class FlipBatchIterator(BatchIterator):
flip_indices = [
(0, 2), (1, 3),
(4, 8), (5, 9), (6, 10), (7, 11),
(12, 16), (13, 17), (14, 18), (15, 19),
(22, 24), (23, 25),
]
def transform(self, Xb, yb):
Xb, yb = super(FlipBatchIterator, self).transform(Xb, yb)
# Don't flip images if we're in 'test' mode:
if not self.test:
# Flip half of the images in this batch at random:
bs = Xb.shape[0]
indices = np.random.choice(bs, bs / 2, replace=False)
Xb[indices] = Xb[indices, :, :, ::-1]
if yb is not None:
# Horizontal flip of all x coordinates:
yb[indices, ::2] = yb[indices, ::2] * -1
# Swap places, e.g. left_eye_center_x -> right_eye_center_x
for a, b in self.flip_indices:
yb[indices, a], yb[indices, b] = (
yb[indices, b], yb[indices, a])
return Xb, yb
class AdjustVariable(object):
def __init__(self, name, start=0.03, stop=0.001):
self.name = name
self.start, self.stop = start, stop
self.ls = None
def __call__(self, nn, train_history):
if self.ls is None:
self.ls = np.linspace(self.start, self.stop, nn.max_epochs)
epoch = train_history[-1]['epoch']
new_value = np.cast['float32'](self.ls[epoch - 1])
getattr(nn, self.name).set_value(new_value)
class EarlyStopping(object):
def __init__(self, patience=100):
self.patience = patience
self.best_valid = np.inf
self.best_valid_epoch = 0
self.best_weights = None
def __call__(self, nn, train_history):
current_valid = train_history[-1]['valid_loss']
current_epoch = train_history[-1]['epoch']
if current_valid < self.best_valid:
self.best_valid = current_valid
self.best_valid_epoch = current_epoch
self.best_weights = [w.get_value() for w in nn.get_all_params()]
elif self.best_valid_epoch + self.patience < current_epoch:
print("Early stopping.")
print("Best valid loss was {:.6f} at epoch {}.".format(
self.best_valid, self.best_valid_epoch))
nn.load_weights_from(self.best_weights)
raise StopIteration()
net = NeuralNet(
layers=[
('input', layers.InputLayer),
('conv1', Conv2DLayer),
('pool1', MaxPool2DLayer),
('dropout1', layers.DropoutLayer),
('conv2', Conv2DLayer),
('pool2', MaxPool2DLayer),
('dropout2', layers.DropoutLayer),
('conv3', Conv2DLayer),
('pool3', MaxPool2DLayer),
('dropout3', layers.DropoutLayer),
('hidden4', layers.DenseLayer),
('dropout4', layers.DropoutLayer),
('hidden5', layers.DenseLayer),
('output', layers.DenseLayer),
],
input_shape=(128, 1, 96, 96),
conv1_num_filters=16, conv1_filter_size=(3, 3), pool1_ds=(2, 2),
dropout1_p=0.1,
conv2_num_filters=32, conv2_filter_size=(2, 2), pool2_ds=(2, 2),
dropout2_p=0.2,
conv3_num_filters=64, conv3_filter_size=(2, 2), pool3_ds=(2, 2),
dropout3_p=0.3,
hidden4_num_units=512,
dropout4_p=0.5,
hidden5_num_units=512,
output_num_units=30, output_nonlinearity=None,
update_learning_rate=theano.shared(float32(0.03)),
update_momentum=theano.shared(float32(0.9)),
regression=True,
batch_iterator=FlipBatchIterator(batch_size=64),
on_epoch_finished=[
AdjustVariable('update_learning_rate', start=0.03, stop=0.0001),
AdjustVariable('update_momentum', start=0.9, stop=0.999),
EarlyStopping(patience=200),
],
max_epochs=3000,
verbose=1,
)
def fit():
X, y = load2d()
net.fit(X, y)
with open('net.pickle', 'wb') as f:
pickle.dump(net, f, -1)
from collections import OrderedDict
from sklearn.base import clone
SPECIALIST_SETTINGS = [
dict(
columns=(
'left_eye_center_x', 'left_eye_center_y',
'right_eye_center_x', 'right_eye_center_y',
),
flip_indices=((0, 2), (1, 3)),
),
dict(
columns=(
'nose_tip_x', 'nose_tip_y',
),
flip_indices=(),
),
dict(
columns=(
'mouth_left_corner_x', 'mouth_left_corner_y',
'mouth_right_corner_x', 'mouth_right_corner_y',
'mouth_center_top_lip_x', 'mouth_center_top_lip_y',
),
flip_indices=((0, 2), (1, 3)),
),
dict(
columns=(
'mouth_center_bottom_lip_x',
'mouth_center_bottom_lip_y',
),
flip_indices=(),
),
dict(
columns=(
'left_eye_inner_corner_x', 'left_eye_inner_corner_y',
'right_eye_inner_corner_x', 'right_eye_inner_corner_y',
'left_eye_outer_corner_x', 'left_eye_outer_corner_y',
'right_eye_outer_corner_x', 'right_eye_outer_corner_y',
),
flip_indices=((0, 2), (1, 3), (4, 6), (5, 7)),
),
dict(
columns=(
'left_eyebrow_inner_end_x', 'left_eyebrow_inner_end_y',
'right_eyebrow_inner_end_x', 'right_eyebrow_inner_end_y',
'left_eyebrow_outer_end_x', 'left_eyebrow_outer_end_y',
'right_eyebrow_outer_end_x', 'right_eyebrow_outer_end_y',
),
flip_indices=((0, 2), (1, 3), (4, 6), (5, 7)),
),
]
def fit_specialists(fname_pretrain=None):
if fname_pretrain:
with open(fname_pretrain, 'rb') as f:
net_pretrain = pickle.load(f)
else:
net_pretrain = None
specialists = OrderedDict()
for setting in SPECIALIST_SETTINGS:
cols = setting['columns']
X, y = load2d(cols=cols)
model = clone(net)
model.output_num_units = y.shape[1]
model.batch_iterator.flip_indices = setting['flip_indices']
model.max_epochs = int(4e6 / y.shape[0])
#model.max_epochs = 1;
if 'kwargs' in setting:
# an option 'kwargs' in the settings list may be used to
# set any other parameter of the net:
vars(model).update(setting['kwargs'])
if net_pretrain is not None:
# if a pretrain model was given, use it to initialize the
# weights of our new specialist model:
model.load_weights_from(net_pretrain)
print("Training model for columns {} for {} epochs".format(
cols, model.max_epochs))
model.fit(X, y)
specialists[cols] = model
with open('net-specialists.pickle', 'wb') as f:
# this time we're persisting a dictionary with all models:
pickle.dump(specialists, f, -1)
def predict(fname_specialists='net-specialists.pickle'):
with open(fname_specialists, 'rb') as f:
specialists = pickle.load(f)
X = load2d(test=True)[0]
y_pred = np.empty((X.shape[0], 0))
for model in specialists.values():
y_pred1 = model.predict(X)
y_pred = np.hstack([y_pred, y_pred1])
columns = ()
for cols in specialists.keys():
columns += cols
y_pred2 = y_pred * 48 + 48
y_pred2 = y_pred2.clip(0, 96)
df = DataFrame(y_pred2, columns=columns)
lookup_table = read_csv(os.path.expanduser(FLOOKUP))
values = []
for index, row in lookup_table.iterrows():
values.append((
row['RowId'],
df.ix[row.ImageId - 1][row.FeatureName],
))
now_str = datetime.now().isoformat().replace(':', '-')
submission = DataFrame(values, columns=('RowId', 'Location'))
filename = 'submission-{}.csv'.format(now_str)
submission.to_csv(filename, index=False)
print("Wrote {}".format(filename))
def rebin( a, newshape ):
from numpy import mgrid
assert len(a.shape) == len(newshape)
slices = [ slice(0,old, float(old)/new) for old,new in zip(a.shape,newshape) ]
coordinates = mgrid[slices]
indices = coordinates.astype('i') #choose the biggest smaller integer index
return a[tuple(indices)]
def plot_learning_curves(fname_specialists='net-specialists.pickle'):
with open(fname_specialists, 'r') as f:
models = pickle.load(f)
fig = pyplot.figure(figsize=(10, 6))
ax = fig.add_subplot(1, 1, 1)
ax.set_color_cycle(
['c', 'c', 'm', 'm', 'y', 'y', 'k', 'k', 'g', 'g', 'b', 'b'])
valid_losses = []
train_losses = []
for model_number, (cg, model) in enumerate(models.items(), 1):
valid_loss = np.array([i['valid_loss'] for i in model.train_history_])
train_loss = np.array([i['train_loss'] for i in model.train_history_])
valid_loss = np.sqrt(valid_loss) * 48
train_loss = np.sqrt(train_loss) * 48
valid_loss = rebin(valid_loss, (100,))
train_loss = rebin(train_loss, (100,))
valid_losses.append(valid_loss)
train_losses.append(train_loss)
ax.plot(valid_loss,
label='{} ({})'.format(cg[0], len(cg)), linewidth=3)
ax.plot(train_loss,
linestyle='--', linewidth=3, alpha=0.6)
ax.set_xticks([])
weights = np.array([m.output_num_units for m in models.values()],
dtype=float)
weights /= weights.sum()
mean_valid_loss = (
np.vstack(valid_losses) * weights.reshape(-1, 1)).sum(axis=0)
ax.plot(mean_valid_loss, color='r', label='mean', linewidth=4, alpha=0.8)
ax.legend()
ax.set_ylim((1.0, 4.0))
ax.grid()
pyplot.ylabel("RMSE")
pyplot.show()
if __name__ == '__main__':
if len(sys.argv) < 2:
print(__doc__)
else:
func = globals()[sys.argv[1]]
func(*sys.argv[2:])