-
Notifications
You must be signed in to change notification settings - Fork 83
/
finetune.py
288 lines (250 loc) · 12.5 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import argparse
import time
import os, sys
import math
import numpy as np
np.random.seed(331)
import torch
import torch.nn as nn
from torch.autograd import Variable
import data
import model
import os
from utils import batchify, get_batch, repackage_hidden, create_exp_dir, save_checkpoint
parser = argparse.ArgumentParser(description='PyTorch PennTreeBank/WikiText2 RNN/LSTM Language Model')
parser.add_argument('--data', type=str, default='./penn/',
help='location of the data corpus')
parser.add_argument('--model', type=str, default='LSTM',
help='type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU)')
parser.add_argument('--emsize', type=int, default=400,
help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=1150,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=3,
help='number of layers')
parser.add_argument('--lr', type=float, default=30,
help='initial learning rate')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=8000,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=80, metavar='N',
help='batch size')
parser.add_argument('--bptt', type=int, default=70,
help='sequence length')
parser.add_argument('--dropout', type=float, default=0.4,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--dropouth', type=float, default=0.3,
help='dropout for rnn layers (0 = no dropout)')
parser.add_argument('--dropouti', type=float, default=0.65,
help='dropout for input embedding layers (0 = no dropout)')
parser.add_argument('--dropoute', type=float, default=0.1,
help='dropout to remove words from embedding layer (0 = no dropout)')
parser.add_argument('--dropoutl', type=float, default=-0.2,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--wdrop', type=float, default=0.5,
help='amount of weight dropout to apply to the RNN hidden to hidden matrix')
parser.add_argument('--tied', action='store_false',
help='tie the word embedding and softmax weights')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--nonmono', type=int, default=5,
help='random seed')
parser.add_argument('--cuda', action='store_false',
help='use CUDA')
parser.add_argument('--log-interval', type=int, default=200, metavar='N',
help='report interval')
parser.add_argument('--save', type=str, required=True,
help='path to the directory that save the final model')
parser.add_argument('--alpha', type=float, default=2,
help='alpha L2 regularization on RNN activation (alpha = 0 means no regularization)')
parser.add_argument('--beta', type=float, default=1,
help='beta slowness regularization applied on RNN activiation (beta = 0 means no regularization)')
parser.add_argument('--wdecay', type=float, default=1.2e-6,
help='weight decay applied to all weights')
parser.add_argument('--continue_train', action='store_true',
help='continue train from a checkpoint')
parser.add_argument('--n_experts', type=int, default=10,
help='number of experts')
parser.add_argument('--small_batch_size', type=int, default=-1,
help='the batch size for computation. batch_size should be divisible by small_batch_size.\
In our implementation, we compute gradients with small_batch_size multiple times, and accumulate the gradients\
until batch_size is reached. An update step is then performed.')
parser.add_argument('--max_seq_len_delta', type=int, default=40,
help='max sequence length')
parser.add_argument('--single_gpu', default=False, action='store_true', help='use single GPU')
args = parser.parse_args()
print('finetune load path: {}/model.pt. '.format(args.save))
print('log save path: {}/finetune_log.txt'.format(args.save))
print('model save path: {}/finetune_model.pt'.format(args.save))
log_file = os.path.join(args.save, 'finetune_log.txt')
if not args.continue_train:
if os.path.exists(log_file):
os.remove(log_file)
def logging(s, print_=True, log_=True):
if print_:
print(s)
if log_:
with open(log_file, 'a+') as f_log:
f_log.write(s + '\n')
if args.dropoutl < 0:
args.dropoutl = args.dropouth
if args.small_batch_size < 0:
args.small_batch_size = args.batch_size
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed_all(args.seed)
###############################################################################
# Load data
###############################################################################
corpus = data.Corpus(args.data)
eval_batch_size = 10
test_batch_size = 1
train_data = batchify(corpus.train, args.batch_size, args)
val_data = batchify(corpus.valid, eval_batch_size, args)
test_data = batchify(corpus.test, test_batch_size, args)
###############################################################################
# Build the model
###############################################################################
ntokens = len(corpus.dictionary)
if args.continue_train:
model = torch.load(os.path.join(args.save, 'finetune_model.pt'))
else:
model = torch.load(os.path.join(args.save, 'model.pt'))
if args.cuda:
if args.single_gpu:
parallel_model = model.cuda()
else:
parallel_model = nn.DataParallel(model, dim=1).cuda()
else:
parallel_model = model
total_params = sum(x.size()[0] * x.size()[1] if len(x.size()) > 1 else x.size()[0] for x in model.parameters())
logging('Args: {}'.format(args))
logging('Model total parameters: {}'.format(total_params))
criterion = nn.CrossEntropyLoss()
###############################################################################
# Training code
###############################################################################
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args)
targets = targets.view(-1)
log_prob, hidden = parallel_model(data, hidden)
loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
total_loss += len(data) * loss
hidden = repackage_hidden(hidden)
return total_loss.item() / len(data_source)
def train():
assert args.batch_size % args.small_batch_size == 0, 'batch_size must be divisible by small_batch_size'
# Turn on training mode which enables dropout.
total_loss = 0
start_time = time.time()
ntokens = len(corpus.dictionary)
hidden = [model.init_hidden(args.small_batch_size) for _ in range(args.batch_size // args.small_batch_size)]
batch, i = 0, 0
while i < train_data.size(0) - 1 - 1:
bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2.
# Prevent excessively small or negative sequence lengths
seq_len = max(5, int(np.random.normal(bptt, 5)))
# There's a very small chance that it could select a very long sequence length resulting in OOM
seq_len = min(seq_len, args.bptt + args.max_seq_len_delta)
lr2 = optimizer.param_groups[0]['lr']
optimizer.param_groups[0]['lr'] = lr2 * seq_len / args.bptt
model.train()
data, targets = get_batch(train_data, i, args, seq_len=seq_len)
optimizer.zero_grad()
start, end, s_id = 0, args.small_batch_size, 0
while start < args.batch_size:
cur_data, cur_targets = data[:, start: end], targets[:, start: end].contiguous().view(-1)
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden[s_id] = repackage_hidden(hidden[s_id])
log_prob, hidden[s_id], rnn_hs, dropped_rnn_hs = parallel_model(cur_data, hidden[s_id], return_h=True)
raw_loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), cur_targets)
loss = raw_loss
# Activiation Regularization
loss = loss + sum(args.alpha * dropped_rnn_h.pow(2).mean() for dropped_rnn_h in dropped_rnn_hs[-1:])
# Temporal Activation Regularization (slowness)
loss = loss + sum(args.beta * (rnn_h[1:] - rnn_h[:-1]).pow(2).mean() for rnn_h in rnn_hs[-1:])
loss *= args.small_batch_size / args.batch_size
total_loss += raw_loss.data * args.small_batch_size / args.batch_size
loss.backward()
s_id += 1
start = end
end = start + args.small_batch_size
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
# total_loss += raw_loss.data
optimizer.param_groups[0]['lr'] = lr2
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss.item() / args.log_interval
elapsed = time.time() - start_time
logging('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, optimizer.param_groups[0]['lr'],
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
###
batch += 1
i += seq_len
# Loop over epochs.
lr = args.lr
stored_loss = evaluate(val_data)
best_val_loss = []
# At any point you can hit Ctrl + C to break out of training early.
try:
#optimizer = torch.optim.ASGD(model.parameters(), lr=args.lr, weight_decay=args.wdecay)
optimizer = torch.optim.ASGD(model.parameters(), lr=args.lr, t0=0, lambd=0., weight_decay=args.wdecay)
if args.continue_train:
optimizer_state = torch.load(os.path.join(args.save, 'finetune_optimizer.pt'))
optimizer.load_state_dict(optimizer_state)
for epoch in range(1, args.epochs+1):
epoch_start_time = time.time()
train()
if 't0' in optimizer.param_groups[0]:
tmp = {}
for prm in model.parameters():
tmp[prm] = prm.data.clone()
prm.data = optimizer.state[prm]['ax'].clone()
val_loss2 = evaluate(val_data)
logging('-' * 89)
logging('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
val_loss2, math.exp(val_loss2)))
logging('-' * 89)
if val_loss2 < stored_loss:
save_checkpoint(model, optimizer, args.save, finetune=True)
logging('Saving Averaged!')
stored_loss = val_loss2
for prm in model.parameters():
prm.data = tmp[prm].clone()
if (len(best_val_loss)>args.nonmono and val_loss2 > min(best_val_loss[:-args.nonmono])):
logging('Done!')
break
optimizer = torch.optim.ASGD(model.parameters(), lr=args.lr, t0=0, lambd=0., weight_decay=args.wdecay)
#optimizer.param_groups[0]['lr'] /= 2.
best_val_loss.append(val_loss2)
except KeyboardInterrupt:
logging('-' * 89)
logging('Exiting from training early')
# Load the best saved model.
model = torch.load(os.path.join(args.save, 'finetune_model.pt'))
parallel_model = nn.DataParallel(model, dim=1).cuda()
# Run on test data.
test_loss = evaluate(test_data, test_batch_size)
logging('=' * 89)
logging('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
test_loss, math.exp(test_loss)))
logging('=' * 89)