-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
275 lines (224 loc) · 9.87 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright (c) V-DETR authors. All Rights Reserved.
import torch
import datetime
import logging
import math
import time
import sys
import os
import json
import numpy as np
from torch.distributed.distributed_c10d import reduce
from util.ap_calculator import APCalculator
from util.misc import SmoothedValue
from util.dist import (
all_gather_dict,
all_reduce_average,
is_primary,
reduce_dict,
barrier,
batch_dict_to_cuda,
)
from util.box_util import (flip_axis_to_camera_tensor, get_3d_box_batch_tensor)
from util.o3d_helper import visualize_pcd, visualize_3d_detection
import open3d as o3d
import sys
sys.path.append('./Uni3D/')
from Uni3D.main import inference
import open_clip
import Uni3D.model.uni3d as models
def compute_learning_rate(args, curr_epoch_normalized):
assert curr_epoch_normalized <= 1.0 and curr_epoch_normalized >= 0.0
if (
curr_epoch_normalized <= (args.warm_lr_epochs / args.max_epoch)
and args.warm_lr_epochs > 0
):
# Linear Warmup
curr_lr = args.warm_lr + curr_epoch_normalized * args.max_epoch * (
(args.base_lr - args.warm_lr) / args.warm_lr_epochs
)
else:
if args.lr_scheduler == 'cosine':
# Cosine Learning Rate Schedule
curr_lr = args.final_lr + 0.5 * (args.base_lr - args.final_lr) * (
1 + math.cos(math.pi * curr_epoch_normalized)
)
else:
step_1, step_2 = args.step_epoch.split('_')
step_1, step_2 = int(step_1), int(step_2)
if curr_epoch_normalized < (step_1 / args.max_epoch):
curr_lr = args.base_lr
elif curr_epoch_normalized < (step_2 / args.max_epoch):
curr_lr = args.base_lr / 10
else:
curr_lr = args.base_lr / 100
return curr_lr
def adjust_learning_rate(args, optimizer, curr_epoch):
curr_lr = compute_learning_rate(args, curr_epoch)
for param_group in optimizer.param_groups:
param_group["lr"] = curr_lr
return curr_lr
def train_one_epoch(
args,
curr_epoch,
model,
optimizer,
criterion,
dataset_config,
dataset_loader,
):
ap_calculator = None
curr_iter = curr_epoch * len(dataset_loader)
max_iters = args.max_epoch * len(dataset_loader)
net_device = next(model.parameters()).device
loss_avg = SmoothedValue(window_size=10)
model.train()
barrier()
for batch_idx, batch_data_label in enumerate(dataset_loader):
curr_time = time.time()
curr_lr = adjust_learning_rate(args, optimizer, curr_iter / max_iters)
batch_data_label = batch_dict_to_cuda(batch_data_label,local_rank=net_device)
# Forward pass
optimizer.zero_grad()
inputs = {
"point_clouds": batch_data_label["point_clouds"],
"point_cloud_dims_min": batch_data_label["point_cloud_dims_min"],
"point_cloud_dims_max": batch_data_label["point_cloud_dims_max"],
}
if args.use_superpoint:
inputs["superpoint_per_point"] = batch_data_label["superpoint_labels"]
outputs = model(inputs)
# Compute loss
loss, loss_dict = criterion(outputs, batch_data_label)
loss_reduced = all_reduce_average(loss)
loss_dict_reduced = reduce_dict(loss_dict)
if not math.isfinite(loss_reduced.item()):
logging.info(f"Loss in not finite. Training will be stopped.")
sys.exit(1)
loss.backward()
if args.clip_gradient > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_gradient)
optimizer.step()
loss_avg.update(loss_reduced.item())
# logging
if is_primary() and curr_iter % args.log_every == 0:
eta_seconds = (max_iters - curr_iter) * (time.time() - curr_time)
eta_str = str(datetime.timedelta(seconds=int(eta_seconds)))
print(
f"Epoch [{curr_epoch}/{args.max_epoch}]; Iter [{curr_iter}/{max_iters}]; Loss {loss_avg.avg:0.2f}; LR {curr_lr:0.2e}; ETA {eta_str}"
)
curr_iter += 1
barrier()
return ap_calculator, curr_iter, curr_lr, loss_avg.avg, loss_dict_reduced
@torch.no_grad()
def evaluate(
args,
curr_epoch,
model,
criterion,
dataset_config,
dataset_loader,
curr_train_iter,
):
# ap calculator is exact for evaluation. This is slower than the ap calculator used during training.
ap_calculator = APCalculator(
dataset_config=dataset_config,
ap_iou_thresh=[0.25, 0.5],
class2type_map=dataset_config.class2type,
no_nms=args.test_no_nms,
args=args
)
curr_iter = 0
device = next(model.parameters()).device
num_batches = len(dataset_loader)
loss_avg = SmoothedValue(window_size=10)
model.eval()
barrier()
epoch_str = f"[{curr_epoch}/{args.max_epoch}]" if curr_epoch > 0 else ""
# It is recommended to download clip model in advance and then load from the local
clip_model, _, _ = open_clip.create_model_and_transforms(model_name="EVA02-E-14-plus", pretrained="./Uni3D/downloads/open_clip_pytorch_model.bin")
clip_model.to(device)
# create model
uni3d_model = getattr(models, 'create_uni3d')(args=args)
uni3d_model.to(device)
for batch_idx, batch_data_label in enumerate(dataset_loader):
batch_data_label = batch_dict_to_cuda(batch_data_label,local_rank=device)
inputs = {
"point_clouds": batch_data_label["point_clouds"],
"point_cloud_dims_min": batch_data_label["point_cloud_dims_min"],
"point_cloud_dims_max": batch_data_label["point_cloud_dims_max"],
}
scene_name = batch_data_label['scan_name'][0]
outputs = model(inputs)
# Compute loss
loss_str = ""
if criterion is not None:
loss, loss_dict = criterion(outputs, batch_data_label)
loss_reduced = all_reduce_average(loss)
loss_dict_reduced = reduce_dict(loss_dict)
loss_avg.update(loss_reduced.item())
loss_str = f"Loss {loss_avg.avg:0.2f};"
else:
loss_dict_reduced = None
if args.cls_loss.split('_')[0] == "focalloss":
outputs["outputs"]["sem_cls_prob"] = outputs["outputs"]["sem_cls_prob"].sigmoid()
outputs["outputs"] = all_gather_dict(outputs["outputs"])
batch_data_label = all_gather_dict(batch_data_label)
if args.axis_align_test:
outputs["outputs"]["box_corners"] = outputs["outputs"]["box_corners_axis_align"]
batch_gt_map_cls, batch_pred_map_cls = ap_calculator.step_meter(outputs, batch_data_label)
batch_pred_map_cls = batch_dict_to_cuda(batch_pred_map_cls,local_rank=device)
if is_primary() and curr_iter % args.log_every == 0:
print(
f"Evaluate {epoch_str}; Batch [{curr_iter}/{num_batches}]"
)
curr_iter += 1
barrier()
## compute bounding box
gt_boxs = [gt_box[:,[0,2,1]] for gt_cls, gt_box in batch_gt_map_cls[0]]
pred_boxs = [pred_box[:,[0,2,1]] for pred_cls, pred_box, con in batch_pred_map_cls[0] if con > args.conf_thresh]
for pred_box in pred_boxs:
pred_box[:, 2] = - pred_box[:, 2]
detected_objects = []
if args.inference_only:
ply_file = os.path.join(args.dataset_root_dir, 'scans', scene_name, scene_name+'_vh_clean_2.ply')
mesh = o3d.io.read_triangle_mesh(ply_file)
meta_file = os.path.join(args.dataset_root_dir, 'scans', scene_name, scene_name+'.txt')
lines = open(meta_file).readlines()
for line in lines:
if 'axisAlignment' in line:
axis_align_matrix = [float(x) \
for x in line.rstrip().strip('axisAlignment = ').split(' ')]
break
axis_align_matrix = np.array(axis_align_matrix).reshape((4,4))
mesh.transform(axis_align_matrix)
for i, pred_box in enumerate(pred_boxs):
bbox_min = np.min(pred_box, axis=0)
bbox_max = np.max(pred_box, axis=0)
bounding_box = o3d.geometry.AxisAlignedBoundingBox(min_bound=bbox_min, max_bound=bbox_max)
cropped_mesh = mesh.crop(bounding_box)
try:
cropped_object = cropped_mesh.sample_points_uniformly(number_of_points=args.npoints)
except RuntimeError as e:
print("Input mesh has no triangles.")
continue
cropped_points = np.asarray(cropped_object.points)
cropped_colors = np.asarray(cropped_object.colors)
cropped_object = np.hstack((cropped_points, cropped_colors))
cropped_pcd = o3d.geometry.PointCloud()
cropped_pcd.points = o3d.utility.Vector3dVector(cropped_points)
cropped_pcd.colors = o3d.utility.Vector3dVector(cropped_colors)
labels = np.array(cropped_pcd.cluster_dbscan(eps=args.eps, min_points=args.min_points, print_progress=False))
num_clusters = labels.max() + 1
# Find the largest cluster
largest_cluster_label = max(range(num_clusters), key=lambda x: np.sum(labels == x))
largest_cluster_indices = np.where(labels == largest_cluster_label)[0]
# Extract points belonging to the largest cluster
filtered_points = cropped_object[largest_cluster_indices]
if len(filtered_points) < args.npoints / 2:
detected_objects.append(cropped_object)
np.save(f"./results/objects/object_{i}.npy", cropped_object)
else:
detected_objects.append(filtered_points)
np.save(f"./results/objects/object_{i}.npy", cropped_object)
return ap_calculator, detected_objects