-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
672 lines (594 loc) · 27.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
# Copyright (c) V-DETR authors. All Rights Reserved.
import argparse
import os
import sys
import pickle
import numpy as np
import torch
from torch.multiprocessing import set_start_method
from torch.utils.data import DataLoader, DistributedSampler
import MinkowskiEngine as ME
from datasets import build_dataset
from engine import evaluate, train_one_epoch
from models import build_model
from optimizer import build_optimizer
from criterion import build_criterion
from util.dist import init_distributed, is_distributed, is_primary, get_rank, barrier
from util.misc import my_worker_init_fn
from util.io import save_checkpoint, resume_if_possible
import wandb
import open3d as o3d
import sys
sys.path.append('./Uni3D/')
from Uni3D.main import inference, retrieve
import open_clip
import Uni3D.model.uni3d as models
def wandb_log(*args, **kwargs):
if is_primary():
wandb.log(*args, **kwargs)
def make_args_parser():
parser = argparse.ArgumentParser("3D Detection Using Transformers", add_help=False)
##### Optimizer #####
parser.add_argument("--base_lr", default=7e-4, type=float)
parser.add_argument("--warm_lr", default=1e-6, type=float)
parser.add_argument("--warm_lr_epochs", default=9, type=int)
parser.add_argument("--final_lr", default=1e-6, type=float)
parser.add_argument("--lr_scheduler", default="cosine", type=str)
parser.add_argument("--weight_decay", default=0.1, type=float)
parser.add_argument("--filter_biases_wd", default=False, action="store_true")
parser.add_argument(
"--clip_gradient", default=0.1, type=float, help="Max L2 norm of the gradient"
)
##### Model #####
parser.add_argument(
"--model_name",
default="vdetr",
type=str,
help="Name of the model",
)
parser.add_argument("--num_points", default=100000, type=int)
parser.add_argument("--minkowski", default=True, action="store_true")
parser.add_argument("--mink_syncbn", default=True, action="store_true")
parser.add_argument("--stem_bn", default=True, action="store_true")
parser.add_argument("--voxel_size", default=0.01, type=float)
parser.add_argument("--depth", default=34, type=int)
parser.add_argument("--inplanes", default=64, type=int)
parser.add_argument("--num_stages", default=4, type=int)
parser.add_argument("--use_fpn", default=True, action="store_true")
parser.add_argument("--layer_idx", default=0, type=int)
parser.add_argument("--no_mink_first_pool", default=True, action="store_true")
parser.add_argument("--enc_dim", default=256, type=int)
### Encoder #we remove the transformer encoder of 3DETR, which is not necessary
# parser.add_argument(
# "--enc_type", default="vanilla", choices=["masked", "maskedv2", "vanilla"]
# )
### Decoder
parser.add_argument("--dec_nlayers", default=9, type=int) #note: the light FFN which is regarded as a simple decoder layer
parser.add_argument("--dec_dim", default=256, type=int)
parser.add_argument("--dec_ffn_dim", default=256, type=int)
parser.add_argument("--dec_dropout", default=0.1, type=float)
parser.add_argument("--dec_nhead", default=4, type=int)
parser.add_argument("--rpe_dim", default=128, type=int)
parser.add_argument("--rpe_quant", default="bilinear_4_10", type=str)
parser.add_argument("--log_scale", default=512, type=float)
parser.add_argument("--pos_for_key", default=False, action="store_true")
parser.add_argument("--querypos_mlp", default=True, action="store_true")
parser.add_argument("--q_content", default="random", type=str)
parser.add_argument("--repeat_num", default=5, type=int) # if you want use the model without NMS, please set the repeat_num==0
parser.add_argument("--proj_nohid", default=True, action="store_true")
parser.add_argument("--woexpand_conv", default=True, action="store_true")
parser.add_argument("--share_selfattn", default=False, action="store_true")
### MLP heads for predicting bounding boxes
parser.add_argument("--mlp_dropout", default=0.3, type=float)
parser.add_argument("--mlp_norm", default="bn1d", type=str)
parser.add_argument("--mlp_act", default="relu", type=str)
parser.add_argument("--mlp_sep", default=True, action="store_true")
parser.add_argument(
"--nsemcls",
default=-1,
type=int,
help="Number of semantic object classes. Can be inferred from dataset",
)
### Other model params
parser.add_argument("--preenc_npoints", default=4096, type=int)
parser.add_argument("--nqueries", default=1024, type=int)
parser.add_argument("--is_bilable", default=True, action="store_true")
parser.add_argument("--no_first_repeat", default=True, action="store_true")
parser.add_argument("--use_superpoint", default=False, action="store_true")
parser.add_argument("--axis_align_test", default=False, action="store_true")
parser.add_argument("--iou_type", default="giou", choices=['giou','diou', 'iou'], type=str)
parser.add_argument("--angle_type", default="", type=str, choices=['world_coords', 'object_coords'], help="Specify the type of angle in 'world coordinate system' or 'object coordinate system', which is no difference in Scannet dataset.")
parser.add_argument("--use_normals", default=False, action="store_true")
parser.add_argument("--hard_anchor", default=False, action="store_true")
##### Set Loss #####
### Matcher
parser.add_argument("--matcher_giou_cost", default=2, type=float)
parser.add_argument("--matcher_cls_cost", default=3, type=float)
parser.add_argument("--matcher_center_cost", default=1, type=float)
parser.add_argument("--matcher_objectness_cost", default=0, type=float)
parser.add_argument("--matcher_size_cost", default=0.5, type=float)
parser.add_argument("--matcher_anglecls_cost", default=0, type=float)
parser.add_argument("--matcher_anglereg_cost", default=0, type=float)
### Loss Weights
parser.add_argument("--cls_loss", default="focalloss_0.25", type=str)
parser.add_argument("--loss_giou_weight", default=2, type=float)
parser.add_argument("--loss_sem_cls_weight", default=3, type=float)
parser.add_argument(
"--loss_no_object_weight", default=0, type=float
) # "no object" or "background" class for detection
parser.add_argument("--loss_angle_cls_weight", default=0.1, type=float)
parser.add_argument("--loss_angle_reg_weight", default=0.5, type=float)
parser.add_argument("--loss_center_weight", default=1, type=float)
parser.add_argument("--loss_size_weight", default=0.5, type=float)
parser.add_argument("--point_cls_loss_weight", default=0.05, type=float)
##### Dataset #####
parser.add_argument(
"--dataset_name", required=True, type=str, choices=["scannet", "sunrgbd"], default="scannet"
)
parser.add_argument(
"--dataset_root_dir",
type=str,
default=None,
help="Root directory containing the dataset files. \
If None, default values from scannet.py/sunrgbd.py are used",
)
parser.add_argument(
"--meta_data_dir",
type=str,
default=None,
help="Root directory containing the metadata files. \
If None, default values from scannet.py/sunrgbd.py are used",
)
parser.add_argument("--dataset_num_workers", default=0, type=int)
parser.add_argument("--batchsize_per_gpu", default=1, type=int)
parser.add_argument("--filt_empty", default=True, action="store_true")
parser.add_argument("--rot_ratio", default=5.0, type=float)
parser.add_argument("--trans_ratio", default=0.4, type=float)
parser.add_argument("--scale_ratio", default=0.4, type=float)
parser.add_argument("--normal_trans", default=False, action="store_true")
parser.add_argument("--use_color", default=False, action="store_true")
parser.add_argument("--xyz_color", default=False, action="store_true")
parser.add_argument("--color_drop", default=0.0, type=float)
parser.add_argument("--color_contrastp", default=0.0, type=float)
parser.add_argument("--color_jitterp", default=0.0, type=float)
parser.add_argument("--hue_sat", default="0.5_0.2_0.0", type=str)
parser.add_argument("--color_mean", default=-1, type=float)
parser.add_argument("--coloraug_sunrgbd", default=False, action="store_true")
##### Training #####
parser.add_argument("--start_epoch", default=-1, type=int)
parser.add_argument("--max_epoch", default=540, type=int)
parser.add_argument("--step_epoch", default="", type=str)
parser.add_argument("--eval_every_epoch", default=10, type=int)
parser.add_argument("--seed", default=0, type=int)
##### Testing #####
parser.add_argument("--inference_only", default=False, action="store_true")
parser.add_argument("--test_only", default=False, action="store_true")
parser.add_argument("--auto_test", default=False, action="store_true")
parser.add_argument("--test_no_nms", default=False, action="store_true",help="if you want use the model without NMS, please set the repeat_num==0")
parser.add_argument("--no_3d_nms", default=False, action="store_true")
parser.add_argument("--rotated_nms", default=False, action="store_true")
parser.add_argument("--nms_iou", default=0.20, type=float)
parser.add_argument("--empty_pt_thre", default=20, type=int)
parser.add_argument("--conf_thresh", default=0.01, type=float)
parser.add_argument("--test_ckpt", default=None, type=str)
parser.add_argument("--angle_nms", default=False, action="store_true")
parser.add_argument("--angle_conf", default=False, action="store_true")
parser.add_argument("--use_old_type_nms", default=False, action="store_true")
parser.add_argument("--no_cls_nms", default=False, action="store_true")
parser.add_argument("--no_per_class_proposal", default=False, action="store_true")
parser.add_argument("--use_cls_confidence_only", default=False, action="store_true")
parser.add_argument("--test_size", default=False, action="store_true")
##### I/O #####
parser.add_argument("--checkpoint_dir", default=None, type=str)
parser.add_argument("--log_every", default=10, type=int)
parser.add_argument("--log_metrics_every", default=20, type=int)
parser.add_argument("--save_separate_checkpoint_every_epoch", default=1, type=int)
##### Distributed Training #####
parser.add_argument("--ngpus", default=1, type=int)
parser.add_argument("--dist_url", default="tcp://localhost:12345", type=str)
##### wandb settings #####
parser.add_argument("--wandb_activate", default=True, type=bool)
parser.add_argument("--wandb_entity", default=None, type=str)
parser.add_argument("--wandb_project", default="vdetr", type=str)
parser.add_argument("--wandb_key", default="", type=str)
##### Uni3D #####
parser.add_argument(
"--pc-model",
type=str,
default="RN50",
help="Name of pointcloud backbone to use.",
)
parser.add_argument(
"--pretrained-pc",
default='',
type=str,
help="Use a pretrained CLIP model vision weights with the specified tag or file path.",
)
parser.add_argument("--pc-feat-dim", type=int, default=768, help="Pointcloud feature dimension.")
parser.add_argument("--pc-encoder-dim", type=int, default=512, help="Pointcloud Transformer encoder dimension.")
parser.add_argument('--ckpt_path', default='', help='the ckpt to test 3d zero shot')
parser.add_argument("--embed-dim", type=int, default=512, help="teacher embedding dimension.")
parser.add_argument('--drop-rate', default=0.0, type=float)
parser.add_argument('--drop-path-rate', default=0.0, type=float)
parser.add_argument("--group-size", type=int, default=32, help="Pointcloud Transformer group size.")
parser.add_argument("--num-group", type=int, default=512, help="Pointcloud Transformer number of groups.")
parser.add_argument("--patch-dropout", type=float, default=0., help="flip patch dropout.")
parser.add_argument("--npoints", type=int, default=10000, help="# of sampled point cloud")
parser.add_argument("--eps", type=float, default=0.1, help="eps for DBSCAN")
parser.add_argument("--min_points", type=int, default=5, help="min_points for DBSCAN")
return parser
def auto_reload(args):
ignore_keys = [
"test_only", "auto_test", "test_no_nms", "no_3d_nms", "rotated_nms",
"nms_iou", "empty_pt_thre", "conf_thresh", "test_ckpt", "angle_nms",
"angle_conf", "use_old_type_nms", "no_cls_nms", "filt_empty",
"no_per_class_proposal", "use_cls_confidence_only", "test_size",
"ngpus","dist_url","model_name","dataset_root_dir","meta_data_dir","checkpoint_dir",
]
ckpt = torch.load(args.test_ckpt, map_location=torch.device("cpu"))
ckpt_args = ckpt["args"]
for arg_name in vars(ckpt_args):
if arg_name not in ignore_keys and hasattr(args, arg_name):
if getattr(args, arg_name) != getattr(ckpt_args, arg_name):
print(arg_name,getattr(args, arg_name),getattr(ckpt_args, arg_name))
setattr(args, arg_name, getattr(ckpt_args, arg_name))
def do_train(
args,
model,
model_no_ddp,
optimizer,
criterion,
dataset_config,
dataloaders,
best_val_metrics,
):
"""
Main training loop.
This trains the model for `args.max_epoch` epochs and tests the model after every `args.eval_every_epoch`.
We always evaluate the final checkpoint and report both the final AP and best AP on the val set.
"""
num_iters_per_epoch = len(dataloaders["train"])
num_iters_per_eval_epoch = len(dataloaders["test"])
print(f"Model is {model}")
print(f"Training started at epoch {args.start_epoch} until {args.max_epoch}.")
print(f"One training epoch = {num_iters_per_epoch} iters.")
print(f"One eval epoch = {num_iters_per_eval_epoch} iters.")
final_eval = os.path.join(args.checkpoint_dir, "final_eval.txt")
final_eval_pkl = os.path.join(args.checkpoint_dir, "final_eval.pkl")
if os.path.isfile(final_eval):
print(f"Found final eval file {final_eval}. Skipping training.")
return
for epoch in range(args.start_epoch, args.max_epoch):
if is_distributed():
dataloaders["train_sampler"].set_epoch(epoch)
aps, wandb_iter, wandb_lr, wandb_loss, wandb_loss_details = train_one_epoch(
args,
epoch,
model,
optimizer,
criterion,
dataset_config,
dataloaders["train"],
)
# latest checkpoint is always stored in checkpoint.pth
save_checkpoint(
args.checkpoint_dir,
model_no_ddp,
optimizer,
epoch,
args,
best_val_metrics,
filename="checkpoint.pth",
)
curr_iter = epoch * len(dataloaders["train"])
use_evaluate = ((epoch != 0) and (epoch % args.eval_every_epoch == 0 or epoch == (args.max_epoch - 1))) or (epoch == 10)
if is_primary():
log_message = dict(\
lr=wandb_lr,
loss=wandb_loss,
loss_cls=wandb_loss_details['loss_sem_cls'].item(),
loss_angle_cls=wandb_loss_details['loss_angle_cls'].item(),
loss_angle_reg=wandb_loss_details['loss_angle_reg'].item(),
loss_center=wandb_loss_details['loss_center'].item() if 'loss_center' in wandb_loss_details else 0.0,
loss_size=wandb_loss_details['loss_size'].item() if 'loss_size' in wandb_loss_details else 0.0,
loss_giou=wandb_loss_details['loss_giou'].item() if 'loss_giou' in wandb_loss_details else 0.0,
)
if 'enc_point_cls_loss' in wandb_loss_details:
log_message_enc=dict(\
enc_point_cls_loss=wandb_loss_details['enc_point_cls_loss'].item(),
)
log_message.update(log_message_enc)#enc_point_cls_loss
if args.wandb_activate:
wandb_log(
data=log_message,
step=wandb_iter,
commit=not use_evaluate
)
if (
epoch > args.max_epoch * 0.90
and args.save_separate_checkpoint_every_epoch > 0
and epoch % args.save_separate_checkpoint_every_epoch == 0
) or (epoch > args.max_epoch * 0.6 and epoch % args.eval_every_epoch == 0):
# separate checkpoints are stored as checkpoint_{epoch}.pth
save_checkpoint(
args.checkpoint_dir,
model_no_ddp,
optimizer,
epoch,
args,
best_val_metrics,
)
if use_evaluate:
if epoch > args.max_epoch * 0.6:
save_checkpoint(
args.checkpoint_dir,
model_no_ddp,
optimizer,
epoch,
args,
best_val_metrics,
)
ap_calculator, wandb_val_loss, wandb_val_loss_details = evaluate(
args,
epoch,
model,
criterion,
dataset_config,
dataloaders["test"],
curr_iter,
)
metrics = ap_calculator.compute_metrics()
ap25 = metrics[0.25]["mAP"]
metric_str = ap_calculator.metrics_to_str(metrics, per_class=True)
metrics_dict = ap_calculator.metrics_to_dict(metrics)
if is_primary():
print("==" * 10)
print(f"Evaluate Epoch [{epoch}/{args.max_epoch}]; Metrics {metric_str}")
print("==" * 10)
log_message = dict(\
val_loss=wandb_val_loss,
val_AP25=metrics_dict['mAP_0.25'],
val_AP50=metrics_dict['mAP_0.5'],
val_AR25=metrics_dict['AR_0.25'],
val_AR50=metrics_dict['AR_0.5'],
val_loss_cls=wandb_val_loss_details['loss_sem_cls'].item(),
val_loss_angle_cls=wandb_val_loss_details['loss_angle_cls'].item(),
val_loss_angle_reg=wandb_val_loss_details['loss_angle_reg'].item(),
val_loss_center=wandb_val_loss_details['loss_center'].item(),
val_loss_size=wandb_val_loss_details['loss_size'].item(),
val_loss_giou=wandb_val_loss_details['loss_giou'].item() if 'loss_giou' in wandb_val_loss_details else 0.0,)
if 'enc_point_cls_loss' in wandb_val_loss_details:
log_message_enc=dict(\
val_enc_point_cls_loss=wandb_val_loss_details['enc_point_cls_loss'].item(),
)
log_message.update(log_message_enc)
if args.wandb_activate:
wandb_log(
data=log_message,
step=wandb_iter,
)
if is_primary() and (
len(best_val_metrics) == 0 or best_val_metrics[0.25]["mAP"] < ap25
):
best_val_metrics = metrics
filename = "checkpoint_best.pth"
save_checkpoint(
args.checkpoint_dir,
model_no_ddp,
optimizer,
epoch,
args,
best_val_metrics,
filename=filename,
)
print(
f"Epoch [{epoch}/{args.max_epoch}] saved current best val checkpoint at {filename}; ap25 {ap25}"
)
# always evaluate last checkpoint
epoch = args.max_epoch - 1
curr_iter = epoch * len(dataloaders["train"])
ap_calculator, wandb_val_loss, wandb_val_loss_details = evaluate(
args,
epoch,
model,
criterion,
dataset_config,
dataloaders["test"],
curr_iter,
)
metrics = ap_calculator.compute_metrics()
metric_str = ap_calculator.metrics_to_str(metrics)
if is_primary():
print("==" * 10)
print(f"Evaluate Final [{epoch}/{args.max_epoch}]; Metrics {metric_str}")
print("==" * 10)
with open(final_eval, "w") as fh:
fh.write("Training Finished.\n")
fh.write("==" * 10)
fh.write("Final Eval Numbers.\n")
fh.write(metric_str)
fh.write("\n")
fh.write("==" * 10)
fh.write("Best Eval Numbers.\n")
fh.write(ap_calculator.metrics_to_str(best_val_metrics))
fh.write("\n")
with open(final_eval_pkl, "wb") as fh:
pickle.dump(metrics, fh)
def test_model(args, model, model_no_ddp, criterion, dataset_config, dataloaders):
if args.test_ckpt is None or not os.path.isfile(args.test_ckpt):
f"Please specify a test checkpoint using --test_ckpt. Found invalid value {args.test_ckpt}"
sys.exit(1)
print("conf_thresh: ", args.conf_thresh)
sd = torch.load(args.test_ckpt, map_location=torch.device("cuda"))
model_no_ddp.load_state_dict(sd["model"],strict=False)
criterion = None # do not compute loss for speed-up; Comment out to see test loss
epoch = -1
curr_iter = 0
ap_calculator, detected_objects = evaluate(
args,
epoch,
model,
criterion,
dataset_config,
dataloaders["test"],
curr_iter,
)
device = 'cuda'
clip_model, _, _ = open_clip.create_model_and_transforms(model_name="EVA02-E-14-plus", pretrained="./Uni3D/downloads/open_clip_pytorch_model.bin")
clip_model.to(device)
# create model
uni3d_model = getattr(models, 'create_uni3d')(args=args)
uni3d_model.to(device)
query = input("Please enter the objects you are interested: ")
retrieve(args, uni3d_model, clip_model, detected_objects, query, device, "scannet")
# if is_primary():
# print("==" * 10)
# print(f"Test model; Metrics {metric_str}")
# print("==" * 10)
# if args.test_size:
# metrics = ap_calculator.compute_metrics(size='S')
# metric_str = ap_calculator.metrics_to_str(metrics)
# if is_primary():
# print("==" * 10)
# print(f"Test model S; Metrics {metric_str}")
# print("==" * 10)
# metrics = ap_calculator.compute_metrics(size='M')
# metric_str = ap_calculator.metrics_to_str(metrics)
# if is_primary():
# print("==" * 10)
# print(f"Test model M; Metrics {metric_str}")
# print("==" * 10)
# metrics = ap_calculator.compute_metrics(size='L')
# metric_str = ap_calculator.metrics_to_str(metrics)
# if is_primary():
# print("==" * 10)
# print(f"Test model L; Metrics {metric_str}")
# print("==" * 10)
# def do_inference(args, model, model_no_ddp, criterion, dataset_config, dataloaders):
# if args.test_ckpt is None or not os.path.isfile(args.test_ckpt):
# f"Please specify a test checkpoint using --test_ckpt. Found invalid value {args.test_ckpt}"
# sys.exit(1)
# sd = torch.load(args.test_ckpt, map_location=torch.device("cpu"))
# model_no_ddp.load_state_dict(sd["model"],strict=False)
# criterion = None # do not compute loss for speed-up; Comment out to see test loss
# epoch = -1
# curr_iter = 0
# ap_calculator, _ , pred_boxs = evaluate(
# args,
# epoch,
# model,
# criterion,
# dataset_config,
# dataloaders["test"],
# curr_iter,
# )
def main(local_rank, args):
if args.ngpus > 1:
print(
"Initializing Distributed Training. This is in BETA mode and hasn't been tested thoroughly. Use at your own risk :)"
)
print("To get the maximum speed-up consider reducing evaluations on val set by setting --eval_every_epoch to greater than 50")
init_distributed(
local_rank,
global_rank=local_rank,
world_size=args.ngpus,
dist_url=args.dist_url,
dist_backend="nccl",
)
# print(f"Called with args: {args}")
torch.cuda.set_device(local_rank)
np.random.seed(args.seed + get_rank())
torch.manual_seed(args.seed + get_rank())
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed + get_rank())
if args.test_only and args.auto_test:
auto_reload(args)
datasets, dataset_config = build_dataset(args)
model = build_model(args, dataset_config)
model = model.cuda(local_rank)
model_no_ddp = model
if is_distributed():
if args.mink_syncbn:
model = ME.MinkowskiSyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank],find_unused_parameters = True,
)
criterion = build_criterion(args, dataset_config)
criterion = criterion.cuda(local_rank)
dataloaders = {}
if args.test_only:
dataset_splits = ["test"]
else:
dataset_splits = ["train", "test"]
for split in dataset_splits:
if split == "train":
shuffle = True
else:
shuffle = False
if is_distributed():
sampler = DistributedSampler(datasets[split], shuffle=shuffle)
elif shuffle:
sampler = torch.utils.data.RandomSampler(datasets[split])
else:
sampler = torch.utils.data.SequentialSampler(datasets[split])
dataloaders[split] = DataLoader(
datasets[split],
sampler=sampler,
batch_size=args.batchsize_per_gpu,
num_workers=0,
worker_init_fn=my_worker_init_fn,
# persistent_workers=True,
pin_memory=True,
collate_fn=datasets[split].collate_fn
)
dataloaders[split + "_sampler"] = sampler
if args.test_only:
criterion = None # faster evaluation
test_model(args, model, model_no_ddp, criterion, dataset_config, dataloaders)
else:
assert (
args.checkpoint_dir is not None
), f"Please specify a checkpoint dir using --checkpoint_dir"
if is_primary() and not os.path.isdir(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir, exist_ok=True)
if is_primary():
# setup wandb
if args.wandb_activate:
wandb.login(key=args.wandb_key)
run = wandb.init(
id=args.checkpoint_dir.split('/')[-1],
name=args.checkpoint_dir.split('/')[-1],
entity=args.wandb_entity,
project=args.wandb_project,
config=args,
)
optimizer = build_optimizer(args, model_no_ddp)
loaded_epoch, best_val_metrics = resume_if_possible(
args.checkpoint_dir, model_no_ddp, optimizer
)
args.start_epoch = loaded_epoch + 1
do_train(
args,
model,
model_no_ddp,
optimizer,
criterion,
dataset_config,
dataloaders,
best_val_metrics,
)
def launch_distributed(args):
world_size = args.ngpus
if world_size == 1:
main(local_rank=0, args=args)
else:
torch.multiprocessing.spawn(main, nprocs=world_size, args=(args,))
if __name__ == "__main__":
parser = make_args_parser()
args = parser.parse_args()
try:
set_start_method("spawn")
except RuntimeError:
pass
launch_distributed(args)