forked from Project-MONAI/MONAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmisc.py
441 lines (361 loc) · 15.3 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections.abc
import inspect
import itertools
import os
import random
import shutil
import tempfile
import types
import warnings
from ast import literal_eval
from distutils.util import strtobool
from pathlib import Path
from typing import Any, Callable, Optional, Sequence, Tuple, Union, cast
import numpy as np
import torch
from monai.config.type_definitions import NdarrayOrTensor, PathLike
from monai.utils.module import version_leq
__all__ = [
"zip_with",
"star_zip_with",
"first",
"issequenceiterable",
"ensure_tuple",
"ensure_tuple_size",
"ensure_tuple_rep",
"fall_back_tuple",
"is_scalar_tensor",
"is_scalar",
"progress_bar",
"get_seed",
"set_determinism",
"list_to_dict",
"MAX_SEED",
"copy_to_device",
"ImageMetaKey",
"is_module_ver_at_least",
"has_option",
"sample_slices",
"save_obj",
]
_seed = None
_flag_deterministic = torch.backends.cudnn.deterministic
_flag_cudnn_benchmark = torch.backends.cudnn.benchmark
MAX_SEED = np.iinfo(np.uint32).max + 1 # 2**32, the actual seed should be in [0, MAX_SEED - 1] for uint32
def zip_with(op, *vals, mapfunc=map):
"""
Map `op`, using `mapfunc`, to each tuple derived from zipping the iterables in `vals`.
"""
return mapfunc(op, zip(*vals))
def star_zip_with(op, *vals):
"""
Use starmap as the mapping function in zipWith.
"""
return zip_with(op, *vals, mapfunc=itertools.starmap)
def first(iterable, default=None):
"""
Returns the first item in the given iterable or `default` if empty, meaningful mostly with 'for' expressions.
"""
for i in iterable:
return i
return default
def issequenceiterable(obj: Any) -> bool:
"""
Determine if the object is an iterable sequence and is not a string.
"""
if isinstance(obj, torch.Tensor):
return int(obj.dim()) > 0 # a 0-d tensor is not iterable
return isinstance(obj, collections.abc.Iterable) and not isinstance(obj, (str, bytes))
def ensure_tuple(vals: Any) -> Tuple[Any, ...]:
"""
Returns a tuple of `vals`.
"""
if not issequenceiterable(vals):
return (vals,)
return tuple(vals)
def ensure_tuple_size(tup: Any, dim: int, pad_val: Any = 0) -> Tuple[Any, ...]:
"""
Returns a copy of `tup` with `dim` values by either shortened or padded with `pad_val` as necessary.
"""
new_tup = ensure_tuple(tup) + (pad_val,) * dim
return new_tup[:dim]
def ensure_tuple_rep(tup: Any, dim: int) -> Tuple[Any, ...]:
"""
Returns a copy of `tup` with `dim` values by either shortened or duplicated input.
Raises:
ValueError: When ``tup`` is a sequence and ``tup`` length is not ``dim``.
Examples::
>>> ensure_tuple_rep(1, 3)
(1, 1, 1)
>>> ensure_tuple_rep(None, 3)
(None, None, None)
>>> ensure_tuple_rep('test', 3)
('test', 'test', 'test')
>>> ensure_tuple_rep([1, 2, 3], 3)
(1, 2, 3)
>>> ensure_tuple_rep(range(3), 3)
(0, 1, 2)
>>> ensure_tuple_rep([1, 2], 3)
ValueError: Sequence must have length 3, got length 2.
"""
if isinstance(tup, torch.Tensor):
tup = tup.detach().cpu().numpy()
if isinstance(tup, np.ndarray):
tup = tup.tolist()
if not issequenceiterable(tup):
return (tup,) * dim
if len(tup) == dim:
return tuple(tup)
raise ValueError(f"Sequence must have length {dim}, got {len(tup)}.")
def fall_back_tuple(
user_provided: Any, default: Union[Sequence, np.ndarray], func: Callable = lambda x: x and x > 0
) -> Tuple[Any, ...]:
"""
Refine `user_provided` according to the `default`, and returns as a validated tuple.
The validation is done for each element in `user_provided` using `func`.
If `func(user_provided[idx])` returns False, the corresponding `default[idx]` will be used
as the fallback.
Typically used when `user_provided` is a tuple of window size provided by the user,
`default` is defined by data, this function returns an updated `user_provided` with its non-positive
components replaced by the corresponding components from `default`.
Args:
user_provided: item to be validated.
default: a sequence used to provided the fallbacks.
func: a Callable to validate every components of `user_provided`.
Examples::
>>> fall_back_tuple((1, 2), (32, 32))
(1, 2)
>>> fall_back_tuple(None, (32, 32))
(32, 32)
>>> fall_back_tuple((-1, 10), (32, 32))
(32, 10)
>>> fall_back_tuple((-1, None), (32, 32))
(32, 32)
>>> fall_back_tuple((1, None), (32, 32))
(1, 32)
>>> fall_back_tuple(0, (32, 32))
(32, 32)
>>> fall_back_tuple(range(3), (32, 64, 48))
(32, 1, 2)
>>> fall_back_tuple([0], (32, 32))
ValueError: Sequence must have length 2, got length 1.
"""
ndim = len(default)
user = ensure_tuple_rep(user_provided, ndim)
return tuple( # use the default values if user provided is not valid
user_c if func(user_c) else default_c for default_c, user_c in zip(default, user)
)
def is_scalar_tensor(val: Any) -> bool:
return isinstance(val, torch.Tensor) and val.ndim == 0
def is_scalar(val: Any) -> bool:
if isinstance(val, torch.Tensor) and val.ndim == 0:
return True
return bool(np.isscalar(val))
def progress_bar(index: int, count: int, desc: Optional[str] = None, bar_len: int = 30, newline: bool = False) -> None:
"""print a progress bar to track some time consuming task.
Args:
index: current status in progress.
count: total steps of the progress.
desc: description of the progress bar, if not None, show before the progress bar.
bar_len: the total length of the bar on screen, default is 30 char.
newline: whether to print in a new line for every index.
"""
end = "\r" if not newline else "\r\n"
filled_len = int(bar_len * index // count)
bar = f"{desc} " if desc is not None else ""
bar += "[" + "=" * filled_len + " " * (bar_len - filled_len) + "]"
print(f"{index}/{count} {bar}", end=end)
if index == count:
print("")
def get_seed() -> Optional[int]:
return _seed
def set_determinism(
seed: Optional[int] = np.iinfo(np.uint32).max,
use_deterministic_algorithms: Optional[bool] = None,
additional_settings: Optional[Union[Sequence[Callable[[int], Any]], Callable[[int], Any]]] = None,
) -> None:
"""
Set random seed for modules to enable or disable deterministic training.
Args:
seed: the random seed to use, default is np.iinfo(np.int32).max.
It is recommended to set a large seed, i.e. a number that has a good balance
of 0 and 1 bits. Avoid having many 0 bits in the seed.
if set to None, will disable deterministic training.
use_deterministic_algorithms: Set whether PyTorch operations must use "deterministic" algorithms.
additional_settings: additional settings that need to set random seed.
"""
if seed is None:
# cast to 32 bit seed for CUDA
seed_ = torch.default_generator.seed() % (np.iinfo(np.int32).max + 1)
torch.manual_seed(seed_)
else:
seed = int(seed) % MAX_SEED
torch.manual_seed(seed)
global _seed
_seed = seed
random.seed(seed)
np.random.seed(seed)
if additional_settings is not None:
additional_settings = ensure_tuple(additional_settings)
for func in additional_settings:
func(seed)
if torch.backends.flags_frozen():
warnings.warn("PyTorch global flag support of backends is disabled, enable it to set global `cudnn` flags.")
torch.backends.__allow_nonbracketed_mutation_flag = True
if seed is not None:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else: # restore the original flags
torch.backends.cudnn.deterministic = _flag_deterministic
torch.backends.cudnn.benchmark = _flag_cudnn_benchmark
if use_deterministic_algorithms is not None:
if hasattr(torch, "use_deterministic_algorithms"): # `use_deterministic_algorithms` is new in torch 1.8.0
torch.use_deterministic_algorithms(use_deterministic_algorithms)
elif hasattr(torch, "set_deterministic"): # `set_deterministic` is new in torch 1.7.0
torch.set_deterministic(use_deterministic_algorithms) # type: ignore
else:
warnings.warn("use_deterministic_algorithms=True, but PyTorch version is too old to set the mode.")
def list_to_dict(items):
"""
To convert a list of "key=value" pairs into a dictionary.
For examples: items: `["a=1", "b=2", "c=3"]`, return: {"a": "1", "b": "2", "c": "3"}.
If no "=" in the pair, use None as the value, for example: ["a"], return: {"a": None}.
Note that it will remove the blanks around keys and values.
"""
def _parse_var(s):
items = s.split("=", maxsplit=1)
key = items[0].strip(" \n\r\t'")
value = items[1].strip(" \n\r\t'") if len(items) > 1 else None
return key, value
d = {}
if items:
for item in items:
key, value = _parse_var(item)
try:
if key in d:
raise KeyError(f"encounter duplicated key {key}.")
d[key] = literal_eval(value)
except ValueError:
try:
d[key] = bool(strtobool(str(value)))
except ValueError:
d[key] = value
return d
def copy_to_device(
obj: Any, device: Optional[Union[str, torch.device]], non_blocking: bool = True, verbose: bool = False
) -> Any:
"""
Copy object or tuple/list/dictionary of objects to ``device``.
Args:
obj: object or tuple/list/dictionary of objects to move to ``device``.
device: move ``obj`` to this device. Can be a string (e.g., ``cpu``, ``cuda``,
``cuda:0``, etc.) or of type ``torch.device``.
non_blocking: when `True`, moves data to device asynchronously if
possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
verbose: when `True`, will print a warning for any elements of incompatible type
not copied to ``device``.
Returns:
Same as input, copied to ``device`` where possible. Original input will be
unchanged.
"""
if hasattr(obj, "to"):
return obj.to(device, non_blocking=non_blocking)
if isinstance(obj, tuple):
return tuple(copy_to_device(o, device, non_blocking) for o in obj)
if isinstance(obj, list):
return [copy_to_device(o, device, non_blocking) for o in obj]
if isinstance(obj, dict):
return {k: copy_to_device(o, device, non_blocking) for k, o in obj.items()}
if verbose:
fn_name = cast(types.FrameType, inspect.currentframe()).f_code.co_name
warnings.warn(f"{fn_name} called with incompatible type: " + f"{type(obj)}. Data will be returned unchanged.")
return obj
class ImageMetaKey:
"""
Common key names in the meta data header of images
"""
FILENAME_OR_OBJ = "filename_or_obj"
PATCH_INDEX = "patch_index"
def has_option(obj, keywords: Union[str, Sequence[str]]) -> bool:
"""
Return a boolean indicating whether the given callable `obj` has the `keywords` in its signature.
"""
if not callable(obj):
return False
sig = inspect.signature(obj)
return all(key in sig.parameters for key in ensure_tuple(keywords))
def is_module_ver_at_least(module, version):
"""Determine if a module's version is at least equal to the given value.
Args:
module: imported module's name, e.g., `np` or `torch`.
version: required version, given as a tuple, e.g., `(1, 8, 0)`.
Returns:
`True` if module is the given version or newer.
"""
test_ver = ".".join(map(str, version))
return module.__version__ != test_ver and version_leq(test_ver, module.__version__)
def sample_slices(data: NdarrayOrTensor, dim: int = 1, as_indices: bool = True, *slicevals: int) -> NdarrayOrTensor:
"""sample several slices of input numpy array or Tensor on specified `dim`.
Args:
data: input data to sample slices, can be numpy array or PyTorch Tensor.
dim: expected dimension index to sample slices, default to `1`.
as_indices: if `True`, `slicevals` arg will be treated as the expected indices of slice, like: `1, 3, 5`
means `data[..., [1, 3, 5], ...]`, if `False`, `slicevals` arg will be treated as args for `slice` func,
like: `1, None` means `data[..., [1:], ...]`, `1, 5` means `data[..., [1: 5], ...]`.
slicevals: indices of slices or start and end indices of expected slices, depends on `as_indices` flag.
"""
slices = [slice(None)] * len(data.shape)
slices[dim] = slicevals if as_indices else slice(*slicevals) # type: ignore
return data[tuple(slices)]
def save_obj(
obj, path: PathLike, create_dir: bool = True, atomic: bool = True, func: Optional[Callable] = None, **kwargs
):
"""
Save an object to file with specified path.
Support to serialize to a temporary file first, then move to final destination,
so that files are guaranteed to not be damaged if exception occurs.
Args:
obj: input object data to save.
path: target file path to save the input object.
create_dir: whether to create dictionary of the path if not existng, default to `True`.
atomic: if `True`, state is serialized to a temporary file first, then move to final destination.
so that files are guaranteed to not be damaged if exception occurs. default to `True`.
func: the function to save file, if None, default to `torch.save`.
kwargs: other args for the save `func` except for the checkpoint and filename.
default `func` is `torch.save()`, details of other args:
https://pytorch.org/docs/stable/generated/torch.save.html.
"""
path = Path(path)
path_dir = path.parent
if not path_dir.exists():
if create_dir:
path_dir.mkdir(parents=True)
else:
raise ValueError(f"the directory of specified path is not existing: {path_dir}.")
if path.exists():
# remove the existing file
os.remove(path)
if func is None:
func = torch.save
if not atomic:
func(obj=obj, f=path, **kwargs)
return
try:
# writing to a temporary directory and then using a nearly atomic rename operation
with tempfile.TemporaryDirectory() as tempdir:
temp_path: Path = Path(tempdir) / path.name
func(obj=obj, f=temp_path, **kwargs)
if temp_path.is_file():
shutil.move(str(temp_path), path)
except PermissionError: # project-monai/monai issue #3613
pass