|
4 | 4 | the zivid.calibration module.
|
5 | 5 | """
|
6 | 6 |
|
| 7 | +import numpy |
| 8 | + |
7 | 9 | import _zivid
|
8 | 10 | from zivid.camera import Camera
|
9 | 11 | from zivid.frame import Frame
|
10 | 12 | from zivid._calibration.pose import Pose
|
11 | 13 |
|
12 | 14 |
|
13 | 15 | class DetectionResult:
|
14 |
| - """Class representing detected feature points.""" |
| 16 | + """Class representing detected feature points from a calibration board.""" |
15 | 17 |
|
16 | 18 | def __init__(self, impl):
|
17 | 19 | """Initialize DetectionResult wrapper.
|
@@ -69,6 +71,203 @@ def __str__(self):
|
69 | 71 | return str(self.__impl)
|
70 | 72 |
|
71 | 73 |
|
| 74 | +class MarkerShape: |
| 75 | + """Holds physical (3D) and image (2D) properties of a detected fiducial marker.""" |
| 76 | + |
| 77 | + def __init__(self, impl): |
| 78 | + """Initialize MarkerShape wrapper. |
| 79 | +
|
| 80 | + This constructor is only used internally, and should not be called by the end-user. |
| 81 | +
|
| 82 | + Args: |
| 83 | + impl: Reference to internal/back-end instance. |
| 84 | +
|
| 85 | + Raises: |
| 86 | + TypeError: If argument does not match the expected internal class. |
| 87 | + """ |
| 88 | + if not isinstance(impl, _zivid.calibration.MarkerShape): |
| 89 | + raise TypeError( |
| 90 | + "Unsupported type for argument impl. Got {}, expected {}".format( |
| 91 | + type(impl), _zivid.calibration.MarkerShape |
| 92 | + ) |
| 93 | + ) |
| 94 | + |
| 95 | + self.__impl = impl |
| 96 | + |
| 97 | + @property |
| 98 | + def corners_in_pixel_coordinates(self): |
| 99 | + """Get 2D image coordinates of the corners of the detected marker. |
| 100 | +
|
| 101 | + Returns: |
| 102 | + Four 2D corner coordinates as a 4x2 numpy array |
| 103 | + """ |
| 104 | + return numpy.array(self.__impl.corners_in_pixel_coordinates()) |
| 105 | + |
| 106 | + @property |
| 107 | + def corners_in_camera_coordinates(self): |
| 108 | + """Get 3D spatial coordinates of the corners of the detected marker. |
| 109 | +
|
| 110 | + Returns: |
| 111 | + Four 3D corner coordinates as a 4x3 numpy array |
| 112 | + """ |
| 113 | + return numpy.array(self.__impl.corners_in_camera_coordinates()) |
| 114 | + |
| 115 | + @property |
| 116 | + def identifier(self): |
| 117 | + """Get the id of the detected marker. |
| 118 | +
|
| 119 | + Returns: |
| 120 | + Id as int |
| 121 | + """ |
| 122 | + return self.__impl.id_() |
| 123 | + |
| 124 | + @property |
| 125 | + def pose(self): |
| 126 | + """Get 3D pose of the marker. |
| 127 | +
|
| 128 | + Returns: |
| 129 | + The Pose of the marker center (4x4 transformation matrix) |
| 130 | + """ |
| 131 | + return Pose(self.__impl.pose().to_matrix()) |
| 132 | + |
| 133 | + |
| 134 | +class MarkerDictionary: |
| 135 | + """Holds information about fiducial markers such as ArUco or AprilTag for detection. |
| 136 | +
|
| 137 | + This class's properties describe the different dictionaries available, for example |
| 138 | + aruco4x4_50 describes the ArUco dictionary with 50 markers of size 4x4. |
| 139 | +
|
| 140 | + For more information on ArUco markers see the OpenCV documentation on ArUco markers: |
| 141 | + https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html, |
| 142 | +
|
| 143 | + To get more information about fiducial markers in general, refer to the wikipedia page: |
| 144 | + https://en.wikipedia.org/wiki/Fiducial_marker |
| 145 | + """ |
| 146 | + |
| 147 | + aruco4x4_50 = "aruco4x4_50" |
| 148 | + aruco4x4_100 = "aruco4x4_100" |
| 149 | + aruco4x4_250 = "aruco4x4_250" |
| 150 | + aruco4x4_1000 = "aruco4x4_1000" |
| 151 | + aruco5x5_50 = "aruco5x5_50" |
| 152 | + aruco5x5_100 = "aruco5x5_100" |
| 153 | + aruco5x5_250 = "aruco5x5_250" |
| 154 | + aruco5x5_1000 = "aruco5x5_1000" |
| 155 | + aruco6x6_50 = "aruco6x6_50" |
| 156 | + aruco6x6_100 = "aruco6x6_100" |
| 157 | + aruco6x6_250 = "aruco6x6_250" |
| 158 | + aruco6x6_1000 = "aruco6x6_1000" |
| 159 | + aruco7x7_50 = "aruco7x7_50" |
| 160 | + aruco7x7_100 = "aruco7x7_100" |
| 161 | + aruco7x7_250 = "aruco7x7_250" |
| 162 | + aruco7x7_1000 = "aruco7x7_1000" |
| 163 | + |
| 164 | + _valid_values = { |
| 165 | + "aruco4x4_50": _zivid.calibration.MarkerDictionary.aruco4x4_50, |
| 166 | + "aruco4x4_100": _zivid.calibration.MarkerDictionary.aruco4x4_100, |
| 167 | + "aruco4x4_250": _zivid.calibration.MarkerDictionary.aruco4x4_250, |
| 168 | + "aruco4x4_1000": _zivid.calibration.MarkerDictionary.aruco4x4_1000, |
| 169 | + "aruco5x5_50": _zivid.calibration.MarkerDictionary.aruco5x5_50, |
| 170 | + "aruco5x5_100": _zivid.calibration.MarkerDictionary.aruco5x5_100, |
| 171 | + "aruco5x5_250": _zivid.calibration.MarkerDictionary.aruco5x5_250, |
| 172 | + "aruco5x5_1000": _zivid.calibration.MarkerDictionary.aruco5x5_1000, |
| 173 | + "aruco6x6_50": _zivid.calibration.MarkerDictionary.aruco6x6_50, |
| 174 | + "aruco6x6_100": _zivid.calibration.MarkerDictionary.aruco6x6_100, |
| 175 | + "aruco6x6_250": _zivid.calibration.MarkerDictionary.aruco6x6_250, |
| 176 | + "aruco6x6_1000": _zivid.calibration.MarkerDictionary.aruco6x6_1000, |
| 177 | + "aruco7x7_50": _zivid.calibration.MarkerDictionary.aruco7x7_50, |
| 178 | + "aruco7x7_100": _zivid.calibration.MarkerDictionary.aruco7x7_100, |
| 179 | + "aruco7x7_250": _zivid.calibration.MarkerDictionary.aruco7x7_250, |
| 180 | + "aruco7x7_1000": _zivid.calibration.MarkerDictionary.aruco7x7_1000, |
| 181 | + } |
| 182 | + |
| 183 | + @classmethod |
| 184 | + def valid_values(cls): |
| 185 | + """Get valid values for MarkerDictionary. |
| 186 | +
|
| 187 | + Returns: |
| 188 | + A list of strings representing valid values for MarkerDictionary. |
| 189 | + """ |
| 190 | + return list(cls._valid_values.keys()) |
| 191 | + |
| 192 | + @classmethod |
| 193 | + def marker_count(cls, dictionary_name): |
| 194 | + """Get the number of markers in a dictionary. |
| 195 | +
|
| 196 | + Args: |
| 197 | + dictionary_name: Name of the dictionary, e.g. "aruco4x4_50". Must be one of the values returned by |
| 198 | + valid_values(). |
| 199 | +
|
| 200 | + Returns: |
| 201 | + Number of markers in the dictionary. |
| 202 | +
|
| 203 | + Raises: |
| 204 | + ValueError: If the dictionary name is not one of the valid values returned by |
| 205 | + valid_values(). |
| 206 | + """ |
| 207 | + if dictionary_name not in cls._valid_values: |
| 208 | + raise ValueError( |
| 209 | + "Invalid dictionary name '{}'. Valid values are {}".format( |
| 210 | + dictionary_name, cls.valid_values() |
| 211 | + ) |
| 212 | + ) |
| 213 | + |
| 214 | + return cls._valid_values[dictionary_name].marker_count() |
| 215 | + |
| 216 | + |
| 217 | +class DetectionResultFiducialMarkers: |
| 218 | + """Class representing detected fiducial markers.""" |
| 219 | + |
| 220 | + def __init__(self, impl): |
| 221 | + """Initialize DetectionResultFiducialMarkers wrapper. |
| 222 | +
|
| 223 | + This constructor is only used internally, and should not be called by the end-user. |
| 224 | +
|
| 225 | + Args: |
| 226 | + impl: Reference to internal/back-end instance. |
| 227 | +
|
| 228 | + Raises: |
| 229 | + TypeError: If argument does not match the expected internal class. |
| 230 | + """ |
| 231 | + if not isinstance(impl, _zivid.calibration.DetectionResultFiducialMarkers): |
| 232 | + raise TypeError( |
| 233 | + "Unsupported type for argument impl. Got {}, expected {}".format( |
| 234 | + type(impl), _zivid.calibration.DetectionResultFiducialMarkers |
| 235 | + ) |
| 236 | + ) |
| 237 | + |
| 238 | + self.__impl = impl |
| 239 | + |
| 240 | + def valid(self): |
| 241 | + """Check validity of DetectionResult. |
| 242 | +
|
| 243 | + Returns: |
| 244 | + True if DetectionResult is valid |
| 245 | + """ |
| 246 | + return self.__impl.valid() |
| 247 | + |
| 248 | + def allowed_marker_ids(self): |
| 249 | + """Get the allowed marker ids this detection result was made with. |
| 250 | +
|
| 251 | + Returns: |
| 252 | + A list of integers, equal to what was passed to the detection function. |
| 253 | + """ |
| 254 | + return self.__impl.allowed_marker_ids() |
| 255 | + |
| 256 | + def detected_markers(self): |
| 257 | + """Get all detected markers. |
| 258 | +
|
| 259 | + Returns: |
| 260 | + A list of MarkerShape instances |
| 261 | + """ |
| 262 | + return [MarkerShape(impl) for impl in self.__impl.detected_markers()] |
| 263 | + |
| 264 | + def __bool__(self): |
| 265 | + return bool(self.__impl) |
| 266 | + |
| 267 | + def __str__(self): |
| 268 | + return str(self.__impl) |
| 269 | + |
| 270 | + |
72 | 271 | def detect_feature_points(point_cloud):
|
73 | 272 | """Detect feature points from a calibration object in a point cloud.
|
74 | 273 |
|
@@ -154,3 +353,46 @@ def capture_calibration_board(camera):
|
154 | 353 | camera._Camera__impl # pylint: disable=protected-access
|
155 | 354 | )
|
156 | 355 | )
|
| 356 | + |
| 357 | + |
| 358 | +def detect_markers(frame, allowed_marker_ids, marker_dictionary): |
| 359 | + """Detect fiducial markers such as ArUco markers in a frame. |
| 360 | +
|
| 361 | + Only markers with integer IDs are supported. To get more information about fiducial markers, refer to the |
| 362 | + wikipedia page: https://en.wikipedia.org/wiki/Fiducial_marker |
| 363 | +
|
| 364 | + For more information on ArUco markers specifically, see the OpenCV documentation on ArUco markers: |
| 365 | + https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html, |
| 366 | +
|
| 367 | + Frame need not contain all markers listed in allowedMarkerIds for a successful detection. |
| 368 | +
|
| 369 | + Args: |
| 370 | + frame: A frame containing an image of one or several fiducial markers |
| 371 | + allowed_marker_ids: List of the IDs of markers to be detected |
| 372 | + marker_dictionary: The name of the marker dictionary to use. The name must be one of the values returned by |
| 373 | + MarkerDictionary.valid_values() |
| 374 | +
|
| 375 | + Raises: |
| 376 | + ValueError: If marker_dictionary is not one of the valid values returned by MarkerDictionary.valid_values() |
| 377 | +
|
| 378 | + Returns: |
| 379 | + A DetectionResultFiducialMarkers instance |
| 380 | + """ |
| 381 | + |
| 382 | + if marker_dictionary not in MarkerDictionary.valid_values(): |
| 383 | + raise ValueError( |
| 384 | + "Invalid marker dictionary '{}'. Valid values are {}".format( |
| 385 | + marker_dictionary, MarkerDictionary.valid_values() |
| 386 | + ) |
| 387 | + ) |
| 388 | + dictionary = MarkerDictionary._valid_values.get( # pylint: disable=protected-access |
| 389 | + marker_dictionary |
| 390 | + ) |
| 391 | + |
| 392 | + return DetectionResultFiducialMarkers( |
| 393 | + _zivid.calibration.detect_markers( |
| 394 | + frame._Frame__impl, # pylint: disable=protected-access |
| 395 | + allowed_marker_ids, |
| 396 | + dictionary, |
| 397 | + ) |
| 398 | + ) |
0 commit comments