-
Notifications
You must be signed in to change notification settings - Fork 0
/
createsample4_torch.py
268 lines (255 loc) · 10.5 KB
/
createsample4_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from __future__ import print_function
# import tensorflow as tf
import torch
# import torch.nn.functional as F
from unet_model import UNet, VENet, Unet
import numpy as np
import os
os.environ['PATH'] = 'E:\\backup\\software\\openslide-win64-20171122\\openslide-win64-20171122\\bin' + ';' + os.environ[
'PATH']
import cv2
import copy
import scipy.ndimage as ndi
from skimage import morphology
try:
import xml.etree.cElementTree as ET
except ImportError:
import xml.etree.ElementTree as ET
def samplemake(input1, locwhole, w, h, logs_dir, pred, batchsize, minsize):
net = Unet(n_classes=1).cuda(0)
net.load_state_dict(torch.load(logs_dir))
net.eval()
print("Model restored...")
# ckpt = tf.train.get_checkpoint_state(logs_dir)
# snapshot_path = '../model/{}'.format(args.model)
# graph = tf.compat.v1.get_default_graph()
# # print(graph)
# image = graph.get_tensor_by_name('input_image:0')
# annotationt = graph.get_tensor_by_name('annotation:0')
# keep_probability = graph.get_tensor_by_name('keep_probability:0')
# pred_annotation = graph.get_tensor_by_name('inference/prediction:0')
# pred_annotation = tf.expand_dims(pred_annotation, dim=3)
size1 = 400
size2 = 400
range1 = np.floor(w / size1)
range2 = np.floor(h / size2)
input = torch.zeros(batchsize, 3, size1, size2)
# input = np.zeros([batchsize, size1, size2, 3])
count = 0
# model_annotations = np.zeros([batchsize, size1, size2])
# model_annotations = np.expand_dims(model_annotations, axis=4)
loc = np.zeros([batchsize, 2])
loc1 = []
order = 0
for input11 in input1:
# print(batchsize)
input21 = np.ascontiguousarray(input11).transpose(2, 0, 1)
patch = torch.from_numpy(input21).float()
# print(patch.shape)
input[count, :, :, :] = copy.deepcopy(patch)
input = input.cuda(0)
count = count + 1
if count == batchsize:
with torch.no_grad():
mask_pred = net(input)
predseg = (torch.sigmoid(mask_pred) > 0.5).float()
predseg = predseg.unsqueeze(dim=1).cpu().numpy()
# predseg = np.squeeze(predseg, axis=3)
loc = locwhole[order*batchsize:(order+1)*batchsize]
order += 1
for num in range(batchsize):
pred[np.int(loc[num][0]): np.int(loc[num][0] + size2),
np.int(loc[num][1]): np.int(loc[num][1] + size1)] = copy.deepcopy(predseg[num, :, :])
predseg1 = predseg[num, :, :]
sum1 = len(predseg1[predseg1 == 0])
if sum1 != size1 * size2:
loc1.append(loc[num])
input = torch.zeros(batchsize, 3, size1, size2)
count = 0
if count != 0:
with torch.no_grad():
mask_pred = net(input)
predseg = (torch.sigmoid(mask_pred) > 0.5).float()
predseg = predseg.unsqueeze(dim=1).cpu().numpy()
for num in range(count):
loc = locwhole[order*batchsize:]
pred[np.int(loc[num][0]): np.int(loc[num][0] + size2),
np.int(loc[num][1]): np.int(loc[num][1] + size1)] = copy.deepcopy(predseg[num, :, :])
predseg1 = predseg[num, :, :]
sum1 = len(predseg1[predseg1 == 0])
if sum1 != size1 * size2:
loc1.append(loc[num])
pp = copy.deepcopy(pred)
bool1 = pp != 0
bool2 = morphology.remove_small_objects(bool1, min_size=minsize, connectivity=2)
pred = pred * 0
pred[bool2] = 1
pred = ndi.binary_fill_holes(pred)
pred = np.array(pred, 'uint8')
loc3 = []
for i in range(len(loc1)):
location = copy.deepcopy(loc1[i])
#location[0] = location[0] - np.int(1/2 * size1)
#location[1] = location[1] - np.int(1/2 * size2)
loc3.append(location)
loc2 = []
locr2 = []
for i in range(len(loc3)):
location = loc3[i]
#1
location1 = copy.deepcopy(location)
location1[0] = location1[0] - np.round(size1/2)
if np.int(location1[0]) >= 0 and np.int(location1[1]) >= 0:
loc2.append(location1)
location1 = copy.deepcopy(location)
location1[1] = location1[1] - np.round(size2/2)
if np.int(location1[0]) >= 0 and np.int(location1[1]) >= 0:
loc2.append(location1)
location1 = copy.deepcopy(location)
location1[0] = location1[0] - np.round(size1/2)
location1[1] = location1[1] - np.round(size2/2)
if np.int(location1[0]) >= 0 and np.int(location1[1]) >= 0:
loc2.append(location1)
#2
location1 = copy.deepcopy(location)
location1[0] = location1[0] + np.round(size1/2)
if np.int(location1[0]) >= 0 and np.int(location1[1]) >= 0:
loc2.append(location1)
location1 = copy.deepcopy(location)
location1[0] = location1[0] + np.round(size1/2)
location1[1] = location1[1] - np.round(size2/2)
if np.int(location1[0]) >= 0 and np.int(location1[1]) >= 0:
loc2.append(location1)
#3
location1 = copy.deepcopy(location)
location1[1] = location1[1] + np.round(size2/2)
if np.int(location1[0]) >= 0 and np.int(location1[1]) >= 0:
loc2.append(location1)
location1 = copy.deepcopy(location)
location1[0] = location1[0] - np.round(size1/2)
location1[1] = location1[1] + np.round(size2/2)
if np.int(location1[0]) >= 0 and np.int(location1[1]) >= 0:
loc2.append(location1)
#4
#3
location1 = copy.deepcopy(location)
location1[0] = location1[0] + np.round(size1/2)
location1[1] = location1[1] + np.round(size2/2)
if np.int(location1[0]) >= 0 and np.int(location1[1]) >= 0:
loc2.append(location1)
# 4
# 3
location1 = copy.deepcopy(location)
location1[0] = location1[0] + np.round(size1 / 2)
location1[1] = location1[1] + np.round(size2 / 2)
if np.int(location1[0]) >= 0 and np.int(location1[1]) >= 0:
loc2.append(location1)
# location1 = copy.deepcopy(location)
# location1[0] = np.max(location1[0] - np.round(size1/2)-np.round(size1/4), 0)
# location1[1] = np.max(location1[1] - np.round(size2/2)-np.round(size1/4), 0)
# if np.int(location1[0]) > 0 and np.int(location1[1]) > 0:
# loc2.append([location1, -1])
return pred, loc2
def blockremove(lenth, batchsize, size1, size2, logs_dir, input3):
net = Unet(n_classes=1).cuda(0)
net.load_state_dict(torch.load(logs_dir))
net.eval()
predseg1 = np.zeros([lenth, size1, size2])
count = 0
input = torch.zeros(batchsize, 3, size1, size2)
# input = np.zeros([batchsize, size1, size2, 3])
num = 0
for input31 in input3:
input11 = np.ascontiguousarray(input31).transpose(2, 0, 1)
patch = torch.from_numpy(input11).float()
input[count, :, :, :] = copy.deepcopy(patch)
input = input.cuda(0)
count += 1
if count == batchsize:
with torch.no_grad():
mask_pred = net(input)
predseg = (torch.sigmoid(mask_pred) > 0.5).float()
predseg = predseg.unsqueeze(dim=1).cpu().numpy()
for ele in predseg:
predseg1[num, :, :] = copy.deepcopy(ele)
num += 1
count = 0
input = torch.zeros(batchsize, 3, size1, size2)
if count != 0:
with torch.no_grad():
mask_pred = net(input)
predseg = (torch.sigmoid(mask_pred) > 0.5).float()
predseg = predseg.unsqueeze(dim=1).cpu().numpy()
for ele in range(count):
predseg1[num, :, :] = copy.deepcopy(predseg[ele, :, :])
return predseg1
def writexml(xml_file, pred):
xml_template = 'template.xml'
tree = ET.parse(xml_template)
annotations = tree.getroot()
annotation = copy.deepcopy(annotations.find('Annotation'))
regions = copy.deepcopy(annotation.find('Regions'))
region = copy.deepcopy(regions.find('Region'))
vertices = copy.deepcopy(region.find('Vertices'))
vertex = copy.deepcopy(vertices.find('Vertex'))
annotations.remove(annotations.find('Annotation'))
annotation.remove(annotation.find('Regions'))
regions.remove(regions.find('Region'))
region.remove(region.find('Vertices'))
vertices.remove(vertices.find('Vertex'))
# 'colors' supports 8 layers at most
colors = [[255, 255, 0], [0, 255, 0], [0, 0, 255], [255, 0, 0], [128, 0, 255], [0, 128, 0], [255, 0, 255],
[128, 128, 255]]
img = pred
color_map = {'1': 0, '2': 1, '3': 2}
annotation_cnt = -1
for id, val in color_map.items():
tmp = np.zeros(img.shape, dtype=np.uint8)
tmp[np.equal(img, val)] = val
contours = cv2.findContours(tmp, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0]
annotation_cnt += 1
color = colors[annotation_cnt]
color = (color[2] * 65536 + color[1] * 256 + color[0])
annotations.append(copy.deepcopy(annotation))
cur_annotation = annotations.findall('Annotation')[-1]
cur_annotation.set('Id', str(id))
cur_annotation.set('LineColor', str(color))
cur_annotation.append(copy.deepcopy(regions))
cur_regions = cur_annotation.find('Regions')
region_cnt = 0
try:
for contour in contours:
region_cnt += 1
cur_regions.append(copy.deepcopy(region))
cur_region = cur_regions.findall('Region')[-1]
cur_region.set('Id', str(region_cnt))
cur_region.set('DisplayId', str(region_cnt))
cur_region.append(copy.deepcopy(vertices))
cur_vertices = cur_region.find('Vertices')
for xy in contour:
vertex.set('X', str(xy[0, 0]))
vertex.set('Y', str(xy[0, 1]))
cur_vertices.append(copy.deepcopy(vertex))
except TypeError:
cd = 0
tree.write(xml_file)
"""
#sa1 = data.coins()
import scipy.misc as misc
import matplotlib.pylab as plt
from skimage import color, filters, morphology
sa1 = misc.imread('F:/sample.png')
sa2 = color.rgb2gray(sa1)
s1 = sa2.shape
sa3 = np.zeros([s1[0], s1[1]])
sa3[sa2 == 0] = 1
#thresh = filters.threshold_otsu(sa3)
#bw = morphology.closing(sa3>thresh, morphology.square(3))
bw = sa3!=0
dst = morphology.remove_small_objects(bw, min_size=1000, connectivity=1)
sa4 = np.zeros_like(sa3, dtype=np.float64)
sa4[dst] = 1
plt.imshow(dst)
plt.show()
"""