-
Notifications
You must be signed in to change notification settings - Fork 0
/
fastread2.py
488 lines (470 loc) · 20.2 KB
/
fastread2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import os
os.environ["OMP_NUM_THREADS"] = "1"
from sklearn.cluster import KMeans
import scipy.ndimage as ndi
import multiprocessing
import shutil
try:
import xml.etree.cElementTree as ET
except ImportError:
import xml.etree.ElementTree as ET
import createsample4_torch as cs
import numpy as np
import cv2
import os
import copy
import glob
import openslide
import time
import scipy.misc as misc
import joblib
from skimage import morphology
import imageio
# import sys
# sys.path.append('E:\\low differential\\TransforLearning_TensorFlow-master')
import TensorflowUtils as utils
from svs_xml import glandseg
from svs_xml import colorcluster1
from humandetect import humanglandcluster
from widthdect import measure
imagesize = 400
enlarge_size = 1500
def segmentblock(kclus, block, down):
_, labels, stats, _ = cv2.connectedComponentsWithStats(kclus.astype('uint8'))
maxnum = np.max(labels)
if maxnum > 0:
for i in range(1, maxnum + 1):
if stats[i, 4] > np.int((400/down)) ** 2:
height_min = stats[i, 1]
height_max = stats[i, 1] + stats[i, 3]
width_min = stats[i, 0]
width_max = stats[i, 0] + stats[i, 2]
if (width_max - width_min + 1) > np.int((400/down)) and (height_max - height_min + 1) > np.int((400/down)):
if ((width_max - width_min) + 1) * ((height_max - height_min) + 1) < np.sum(kclus1[height_min:height_max, width_min:width_max]) * 2:
info = [height_min, height_max, width_min, width_max]
block.append(info)
else:
pp = np.zeros_like(labels, dtype='int')
pp[height_min: np.int(height_min + (height_max - height_min) / 2),
width_min: np.int(width_min + (width_max - width_min) / 2)] = 1
pp1 = copy.deepcopy(pp)
block = copy.deepcopy(segmentblock(pp1*kclus, block, down))
pp = np.zeros_like(labels, dtype='int')
pp[np.int(height_min + (height_max - height_min) / 2): height_max,
width_min: np.int(width_min + (width_max - width_min) / 2)] = 1
pp2 = copy.deepcopy(pp)
block = copy.deepcopy(segmentblock(pp2*kclus, block, down))
pp = np.zeros_like(labels, dtype='int')
pp[height_min: np.int(height_min + (height_max - height_min) / 2),
np.int(width_min + (width_max - width_min) / 2): width_max] = 1
pp3 = copy.deepcopy(pp)
block = copy.deepcopy(segmentblock(pp3*kclus, block, down))
pp = np.zeros_like(labels, dtype='int')
pp[np.int(height_min + (height_max - height_min) / 2):height_max,
np.int(width_min + (width_max - width_min) / 2):width_max] = 1
pp4 = copy.deepcopy(pp)
block = copy.deepcopy(segmentblock(pp4*kclus, block, down))
return block
def readimage(picloc, reimagesize, down, pad, svs_file, num, base, pkl_file):
kclus1 = joblib.load(pkl_file)
svs = openslide.OpenSlide(svs_file)
if np.sum(kclus1[picloc[0]:picloc[0]+reimagesize, picloc[1]:picloc[1]+reimagesize]) >= np.int(reimagesize**2*3/4):
region = np.array(svs.read_region((np.int(picloc[1]*down), np.int(picloc[0]*down)), 0, (400, 400)))
region = copy.deepcopy(region[:, :, 0:3])
code = cv2.imencode('.jpg', region)[1].tostring()
if (picloc[0]-picloc[2]) % (4*pad) == 0 and (picloc[1]-picloc[3]) % (4*pad) == 0:
# imageio.imwrite(base+str(num)+'.png', region)
preimage = pre(region)
preimage = normalize_img(preimage)######0-1归一化
return [region, [np.int(picloc[0]*down), np.int(picloc[1]*down)], code, preimage, [picloc[0], picloc[1]]]
else:
return [region, [np.int(picloc[0]*down), np.int(picloc[1]*down)], code, 0, 0]
else:
return 0
def normalize_img(img):
if np.max(img)!= np.min(img):
trans_img = (img-np.min(img))/(np.max(img)-np.min(img))
return trans_img
elif np.max(img)>=1:
# trans_img
return img/np.max(img)
else:
return img
def saveimage(pic, num):
misc.imsave('E:/testfile/' + str(num) + '.png', pic)
def pre(input1):
input12 = utils.preprocess(input1)
return input12
def postprocess(predseg1, pred1, loc2):
if loc2[1] == -1:
predseg1 = cv2.resize(predseg1, (1000, 1000))
pred1[(pred1 == 0) & (predseg1 != 0)] = copy.deepcopy(predseg1[(pred1 == 0) & (predseg1 != 0)])
pp = copy.deepcopy(pred1)
bool1 = pp == 1
bool2 = morphology.remove_small_objects(bool1, min_size=minsize, connectivity=4)
pp1 = np.zeros_like(pp, dtype=np.float64)
pp1[bool2] = 1
pp1 = ndi.binary_fill_holes(pp1).astype(int)
return [pp1, loc2]
def pre1(loc1, loc2, region):
region = copy.deepcopy(region[:, :, 0:3])
region_size = np.shape(region)[0]
if region_size != 400:
region = cv2.resize(region, (400, 400))
input12 = utils.preprocess(region)
if region_size == 400:
return [input12, loc1, loc2]
else:
return[input12, loc1, loc2, -1]
def createpkl(svs_file, base):
svs = openslide.OpenSlide(svs_file)
nameorder = svs_file.split('/')[-1].split('.')[0]
countlevel = svs.level_count
dim1 = svs.level_dimensions[countlevel - 1]
down = svs.level_downsamples[countlevel - 1]
patch = np.array(svs.read_region((0, 0), countlevel - 1, (dim1[0], dim1[1])))
patch = patch[:, :, 0:3]
ac = copy.deepcopy(patch)
ac1 = np.reshape(ac, [dim1[0] * dim1[1], 3], 'F')
clus = copy.deepcopy(ac1)
mod = KMeans(n_clusters=2, n_init=1)
kclus = mod.fit_predict(clus)
kclus1 = np.reshape(kclus, [dim1[1], dim1[0]], 'F')
pan1 = np.sum((ac[:, :, 0] + ac[:, :, 1] + ac[:, :, 2]) * kclus1) / (np.sum(kclus1))
pan2 = np.sum((ac[:, :, 0] + ac[:, :, 1] + ac[:, :, 2]) * (1 - kclus1)) / (dim1[0] * dim1[1] - np.sum(1 - kclus1))
if pan2 < pan1:
kclus1 = copy.deepcopy(1 - kclus1)
kclus1p = copy.deepcopy(kclus1)
bool1 = kclus1p != 0
bool2 = morphology.remove_small_objects(bool1, min_size=np.int(50 ** 2 / (down ** 2)), connectivity=4)
kclus1 = kclus1 * 0
kclus1[bool2] = 1
kclus1 = ndi.binary_fill_holes(kclus1)
kclus1 = np.array(kclus1, 'uint8')
kclus1 = copy.deepcopy(kclus1)
kclus1 = np.array(kclus1, 'uint8')
# imageio.imwrite('E:/1.png', kclus1 * 255)
joblib.dump(kclus1, base + nameorder + '.pkl')
return [kclus1, nameorder]
def widthcal(vertex_list, color_map, id, svs_file, img_dim,i):
svs1 = openslide.OpenSlide(svs_file)
xy = np.array([vertex_list])
xy1 = np.squeeze(xy, 0)
height_min = np.min(xy1[:, 1])
height_max = np.max(xy1[:, 1]) # xml文件中第一列的位置数据为图片列的位置信息
width_min = np.min(xy1[:, 0])
width_max = np.max(xy1[:, 0])
X = np.mean(xy1[:, 1])
Y = np.mean(xy1[:, 0])
height_min = np.max([height_min-50, 0])
height_max = np.min([height_max+50, img_dim[1]])
width_min = np.max([width_min - 50, 0])
width_max = np.min([width_max+50, img_dim[0]])
image_sample = svs1.read_region((width_min, height_min), 0, (
width_max - width_min, height_max - height_min))
Annotation_sample = np.zeros_like(image_sample)
import matplotlib.pylab as plt
# svs大图数据读取的第一条信息也是列的位置信息
image_sample = np.array(image_sample)
image_sample = image_sample[:, :, 0:3]
Annotation_sample = Annotation_sample[:, :, 0]
# for xx in xy1:
# annotation_sample[xx[1], xx[0]] = 255
# plt.imshow(annotation_sample)
# plt.show()
xy1[:, 0] = xy1[:, 0] - width_min
xy1[:, 1] = xy1[:, 1] - height_min
xy1 = np.expand_dims(xy1, 0)
annotation_sample = copy.deepcopy(Annotation_sample)
cv2.fillPoly(annotation_sample, [xy1], color_map[id])
xy1 = np.squeeze(xy1)
# pp1 = copy.deepcopy(annotation_sample)
# pp1[pp1 != 0] = 255
# order += 1
# misc.imsave('D:/test1/'+str(order)+'.png', pp1)
# misc.imsave('D:\\2.png', image_sample)
width = []
appendixinfo = []
calculateare = np.zeros_like(annotation_sample)
calculateare[annotation_sample != 0] = 1
areasquare = np.sum(calculateare)
[avewidth, ratio, r, g, b, cof, nux, nuy] = measure(image_sample, annotation_sample)
width.append([round(avewidth, 3), X, Y, round(ratio, 3), r, g, b, cof])
if len(nux) != 0:
assistloc = np.ones([len(nux), 1])
for orderi in range(len(xy1)):
X1 = (nux - xy1[orderi, 0]) ** 2 + (nuy - xy1[orderi, 1]) ** 2
minloc = np.where(X1 == np.min(X1))[0][0]
assistloc[minloc] = 0
totalsum = np.sum(assistloc)
appendixinfo.append([areasquare, totalsum])
# region.set('Text', str(round(avewidth)))
else:
appendixinfo.append([areasquare, 0])
# region.set('Text', str(round(avewidth)))
#print(areasquare)
return [width, appendixinfo, i]
if __name__ == '__main__':
cpu_core = 18
#
# filebase = './finaltest2/'
# filebase = '../backup/zsc/Nanfang_hosipital_data/test/'
# filebase = '../Final_test/'
filebase = '../test_svs/'
files = sorted(glob.glob(filebase + '*.svs'), key=os.path.getmtime)
# files = glob.glob(filebase+'*.svs')
svmloc = './model/train_model2.m'
filesname = []
for file in files:
name = file.split('./')[-1].split('/')[-1].split('.')[0]
filesname.append(name)
if os.path.isdir(filebase + name +'cache') == False:
os.makedirs(filebase + name +'cache')
Kclus1 = []
Whole = []
Nameorder = []
pool = multiprocessing.Pool(processes=cpu_core)
for svsname in filesname:
if len(glob.glob(filebase + svsname +'cache/'+'*.pkl')) == 0:
svs_file = filebase + svsname +'.svs'
base = filebase + svsname +'cache/'
Whole.append(pool.apply_async(createpkl, (svs_file, base, )))
pool.close()
pool.join()
# whole = []
# for i in range(len(Whole)):
# whole.append(Whole[i].get())
# for i in range(len(whole)):
# Kclus1.append(whole[i][0])
# Nameorder.append(whole[i][1])
# for i in range(len(Kclus1)):
# kclus1 = Kclus1[i]
# nameorder = Nameorder[i]
# joblib.dump(kclus1, base + nameorder + '.pkl')
for svsnum in range(len(files)):
# logs_dir = '../zsc/python_project/VENet_project/model/1_1_1_0VENet_nanfang_Lv_npy/'
logs_dir = '../python_project/VENet_project/model/1_1_1_0UNet_nanfang_Lv_npy/best.pth'
svs_file = files[svsnum] # svs_file,base
nameorder = svs_file.split(filebase)[1].split('.')[0]
base = filebase + nameorder + 'cache/'
pkl_file = base + nameorder + '.pkl'
kclus1 = joblib.load(pkl_file)
xml_file1 = base + nameorder + '.xml'
xml_file2 = base + nameorder + 'A.xml'
if len(glob.glob(xml_file1)) == 0:
#xml_file2 = 'E:/pictest/' + nameorder + '(2).xml'
svs = openslide.OpenSlide(svs_file)
dim = svs.dimensions
countlevel = svs.level_count
dim1 = svs.level_dimensions[countlevel - 1]
down = svs.level_downsamples[countlevel - 1]
pad = np.int(100 / down)
shift = np.int(200 / down)
reimagesize = np.int(400 / down)
block = []
blocks = segmentblock(kclus1, block, down)
del kclus1
results = []
picloc = []
pic = []
picLoc = []
for block in blocks:
height_min = np.max([block[0] - shift, 0])
height_max = np.min([block[1] + shift, dim1[1]])
width_min = np.max([block[2] - shift, 0])
width_max = np.min([block[3] + shift, dim1[0]])
s1 = np.int((height_max-height_min-reimagesize)/pad)
s2 = np.int((width_max-width_min-reimagesize)/pad)
for i in range(s1):
for j in range(s2):
picloc.append([i*pad+height_min, j*pad+width_min, height_min, width_min])
pool = multiprocessing.Pool(processes=cpu_core)
for num in range(len(picloc)):
pic.append(pool.apply_async(readimage, (picloc[num], reimagesize, down, pad, svs_file, num, base, pkl_file, )))
pool.close()
pool.join()
del picloc
figure = []
whole = []
codeimage = []
preimage = []
preloc = []
for num in range(len(pic)):
whole.append(pic[num].get())
for num in range(len(whole)):
if isinstance(whole[num], int) == False:
figure.append(whole[num][0])
picLoc.append(whole[num][1])
codeimage.append(whole[num][2])
if isinstance(whole[num][3], int) == False:
preimage.append(whole[num][3])
preloc.append(whole[num][1])
del whole
del figure
del pic
del codeimage
del picLoc
#detectlowregion(dim[0], dim[1], picLoc, xml_file1, xml_file2, codeimage)
pred = np.zeros([dim[1], dim[0]], 'float32')
batchsize = 20
minsize = 50 * 50
num = 0
print(len(preimage))
print('This way')
print("Setting up Saver...")
# device = torch.device('cuda:3')
# net = Unet(n_classes=1).cuda(0)
# net.load_state_dict(torch.load(logs_dir))
# net.eval()
# print("Model restored...")
pred, loc2 = cs.samplemake(preimage, preloc, dim[0], dim[1], logs_dir, pred, batchsize, minsize)
del preimage
del preloc
t5 = time.time()
pool = multiprocessing.Pool(processes=cpu_core) # 创建12个进程
input1 = []
for i in range(len(loc2)):
if loc2[i][1] != -1:
region = np.array(svs.read_region(((np.int(loc2[i][1]), np.int(loc2[i][0]))), 0, (400, 400)))
input1.append(pool.apply_async(pre1, (np.int(loc2[i][1]), np.int(loc2[i][0]), region, )))
else:
region = np.array(svs.read_region((np.int(loc2[i][0][1]), np.int(loc2[i][0][0])), 0, (1000, 1000)))
input1.append(pool.apply_async(pre1, (np.int(loc2[i][0][1]), np.int(loc2[i][0][0]), region, )))
pool.close()
pool.join()
del region
input2 = []
loc2 = []
for num in range(len(input1)):
input2.append(input1[num].get())
del input1
input3 = []
for ele in input2:
input3.append(ele[0])
for ele in input2:
loc2.append(ele[1:])
del input2
print("Setting up Saver...block removing")
# print("Model restored...")
patch1 = cs.blockremove(len(loc2), batchsize, 400, 400, logs_dir, input3)
del input3
results2 = []
pool2 = multiprocessing.Pool(processes= cpu_core)
patchpred = []
for i in range(len(loc2)):
loc3 = loc2[i]
if loc3[1] != -1:
patchpred.append(pred[np.int(loc3[1]):np.int(loc3[1]) + 400,
np.int(loc3[0]):np.int(loc3[0]) + 400])
else:
patchpred.append(pred[np.int(loc3[1]):np.int(loc3[1]) + 1000,
np.int(loc3[0]):np.int(loc3[0]) + 1000])
for i in range(len(loc2)):
results2.append(pool2.apply_async(postprocess, (patch1[i, :, :], patchpred[i], loc2[i], )))
pool2.close()
pool2.join()
del patch1
del loc2
del patchpred
for i in range(len(results2)):
ele = results2[i].get()
loc3 = ele[1]
if loc3[1] != -1:
pred[np.int(loc3[1]):np.int(loc3[1]) + 400, np.int(loc3[0]):np.int(loc3[0]) + 400] = ele[0]
else:
pred[np.int(loc3[0][1]):np.int(loc3[0][1]) + 1000, np.int(loc3[0][0]):np.int(loc3[0][0]) + 1000] = ele[0]
#t5 = time.time()
del results2
pp = copy.deepcopy(pred)
bool1 = pp != 0
del pp
bool2 = morphology.remove_small_objects(bool1, min_size=minsize, connectivity=4)
pred = pred * 0
pred[bool2] = 1
del bool1
del bool2
pred[pred != 0] = 1
pred = ndi.binary_fill_holes(pred)
pred = np.array(pred, 'uint8')
######test
# import imageio
# imageio.imwrite(base+'mask.png', 255*pred)
##########
cs.writexml(xml_file1, pred)
t5 = time.time()
del pred
final = time.time()
###计算腺体各项特征指标
widthinfo = {}
judgeLOC = base + '2.npy'
jLOC = glob.glob(judgeLOC)
judgeLOC1 = base + '1.npy'
judgeLOC2 = base + '3.npy'
Inform = []
print('start')
#pool = multiprocessing.Pool(processes=10) # 创建12个进程
if len(glob.glob(judgeLOC1)) == 0 or len(glob.glob(judgeLOC)) == 0 or len(glob.glob(judgeLOC2)) == 0:
color_map = {'2': 128, '3': 255}
svs = openslide.OpenSlide(svs_file)
img_dim = svs.dimensions
width = []
appendixinfo = []
tree = ET.parse(xml_file1)
annotations = tree.getroot()
Vertex_list = []
ordernum = []
count = 1
for annotation in annotations:
id = annotation.get('Id')
if id != '1':
print(id)
Id = id
for region in annotation.iter(tag='Region'):
vertex_list = []
for vertex in region.iter(tag='Vertex'):
vertex_list.append([int(np.floor(float(vertex.get('X')))), int(np.floor(float(vertex.get('Y'))))])
Vertex_list.append(vertex_list)
#print('cao')
pool = multiprocessing.Pool(processes=cpu_core) # 创建12个进程
for i in range(len(Vertex_list)):
vertex_list = Vertex_list[i]
Inform.append(pool.apply_async(widthcal, (vertex_list, color_map, Id, svs_file, img_dim, i, )))
# Inform.append(widthcal(vertex_list, color_map, Id, svs_file, img_dim,i))
# tree.write(xml_file2)
pool.close()
pool.join()
width = []
appendixinfo = []
for i in range(len(Inform)):
ele = Inform[i].get()
width.append(ele[0])
appendixinfo.append(ele[1])
ordernum.append(ele[2])
name1 = svs_file.split('./')
name1 = name1[-1].split('.svs')
np.save(judgeLOC, np.array(width))
np.save(judgeLOC1, np.array(appendixinfo))
np.save(judgeLOC2, np.array(ordernum))
width = np.load(judgeLOC)
width = width.tolist()
ordernum = np.load(judgeLOC2)
ordernum = ordernum.tolist()
tree = ET.parse(xml_file1)
annotations = tree.getroot()
num = 0
for annotation in annotations:
id = annotation.get('Id')
if id != '1':
print(id)
Id = id
for region in annotation.iter(tag='Region'):
region.set('Text', str(round(width[ordernum[num]][0][0])))
num += 1
tree.write(xml_file2)
dection = humanglandcluster(judgeLOC, judgeLOC1, judgeLOC2, xml_file1, svs_file, svmloc)
# svs_file, base
shutil.move(svs_file, base+'/'+nameorder+'.svs')
#data = open("E:\\test2\\first\\test\\11\\detection.txt", "w")
#for dec in dection:
# data.write(dec + '\n')
#data.close()