-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocessing.py
272 lines (218 loc) · 9.31 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""Utility functions for preprocessing data sets."""
from PIL import Image
import numpy as np
import tensorflow as tf
import copy
_R_MEAN = 123.68
_G_MEAN = 116.78
_B_MEAN = 103.94
# colour map
label_colours = [(0, 0, 0), # 0=background
# 1=aeroplane, 2=bicycle, 3=bird, 4=boat, 5=bottle
(128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128),
# 6=bus, 7=car, 8=cat, 9=chair, 10=cow
(0, 128, 128), (128, 128, 128), (64, 0, 0), (192, 0, 0), (64, 128, 0),
# 11=dining table, 12=dog, 13=horse, 14=motorbike, 15=person
(192, 128, 0), (64, 0, 128), (192, 0, 128), (64, 128, 128), (192, 128, 128),
# 16=potted plant, 17=sheep, 18=sofa, 19=train, 20=tv/monitor
(0, 64, 0), (128, 64, 0), (0, 192, 0), (128, 192, 0), (0, 64, 128)]
def decode_labels(mask, num_images=1, num_classes=21):
"""Decode batch of segmentation masks.
Args:
mask: result of inference after taking argmax.
num_images: number of images to decode from the batch.
num_classes: number of classes to predict (including background).
Returns:
A batch with num_images RGB images of the same size as the input.
"""
n, h, w, c = mask.shape
assert (n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' \
% (n, num_images)
outputs = np.zeros((num_images, h, w, 3), dtype=np.uint8)
for i in range(num_images):
img = Image.new('RGB', (len(mask[i, 0]), len(mask[i])))
pixels = img.load()
for j_, j in enumerate(mask[i, :, :, 0]):
for k_, k in enumerate(j):
if k < num_classes:
pixels[k_, j_] = label_colours[k]
outputs[i] = np.array(img)
return outputs
def mean_image_addition(image, means=(_R_MEAN, _G_MEAN, _B_MEAN)):
"""Adds the given means from each image channel.
For example:
means = [123.68, 116.779, 103.939]
image = _mean_image_subtraction(image, means)
Note that the rank of `image` must be known.
Args:
image: a tensor of size [height, width, C].
means: a C-vector of values to subtract from each channel.
Returns:
the centered image.
Raises:
ValueError: If the rank of `image` is unknown, if `image` has a rank other
than three or if the number of channels in `image` doesn't match the
number of values in `means`.
"""
means = (tf.reduce_mean(image[:, :, 0]), tf.reduce_mean(image[:, :, 1]), tf.reduce_mean(image[:, :, 2]))
if image.get_shape().ndims != 3:
raise ValueError('Input must be of size [height, width, C>0]')
num_channels = image.get_shape().as_list()[-1]
if len(means) != num_channels:
raise ValueError('len(means) must match the number of channels')
channels = tf.split(axis=2, num_or_size_splits=num_channels, value=image)
for i in range(num_channels):
channels[i] += means[i]
return tf.concat(axis=2, values=channels)
def mean_image_subtraction(image, means=(_R_MEAN, _G_MEAN, _B_MEAN)):
"""Subtracts the given means from each image channel.
For example:
means = [123.68, 116.779, 103.939]
image = _mean_image_subtraction(image, means)
Note that the rank of `image` must be known.
Args:
image: a tensor of size [height, width, C].
means: a C-vector of values to subtract from each channel.
Returns:
the centered image.
Raises:
ValueError: If the rank of `image` is unknown, if `image` has a rank other
than three or if the number of channels in `image` doesn't match the
number of values in `means`.
"""
means = (tf.reduce_mean(image[:, :, 0]), tf.reduce_mean(image[:, :, 1]), tf.reduce_mean(image[:, :, 2]))
if image.get_shape().ndims != 3:
raise ValueError('Input must be of size [height, width, C>0]')
num_channels = image.get_shape().as_list()[-1]
if len(means) != num_channels:
raise ValueError('len(means) must match the number of channels')
channels = tf.split(axis=2, num_or_size_splits=num_channels, value=image)
for i in range(num_channels):
channels[i] -= means[i]
return tf.concat(axis=2, values=channels)
def random_rescale_image_and_label(image, label, min_scale, max_scale):
"""Rescale an image and label with in target scale.
Rescales an image and label within the range of target scale.
Args:
image: 3-D Tensor of shape `[height, width, channels]`.
label: 3-D Tensor of shape `[height, width, 1]`.
min_scale: Min target scale.
max_scale: Max target scale.
Returns:
Cropped and/or padded image.
If `images` was 3-D, a 3-D float Tensor of shape
`[new_height, new_width, channels]`.
If `labels` was 3-D, a 3-D float Tensor of shape
`[new_height, new_width, 1]`.
"""
if min_scale <= 0:
raise ValueError('\'min_scale\' must be greater than 0.')
elif max_scale <= 0:
raise ValueError('\'max_scale\' must be greater than 0.')
elif min_scale >= max_scale:
raise ValueError('\'max_scale\' must be greater than \'min_scale\'.')
shape = tf.shape(image)
height = tf.to_float(shape[0])
width = tf.to_float(shape[1])
scale = tf.random_uniform(
[], minval=min_scale, maxval=max_scale, dtype=tf.float32)
new_height = tf.to_int32(height * scale)
new_width = tf.to_int32(width * scale)
image = tf.image.resize_images(image, [new_height, new_width],
method=tf.image.ResizeMethod.BILINEAR)
# Since label classes are integers, nearest neighbor need to be used.
label = tf.image.resize_images(label, [new_height, new_width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
return image, label
def random_crop_or_pad_image_and_label(image, label, crop_height, crop_width, ignore_label):
"""Crops and/or pads an image to a target width and height.
Resizes an image to a target width and height by rondomly
cropping the image or padding it evenly with zeros.
Args:
image: 3-D Tensor of shape `[height, width, channels]`.
label: 3-D Tensor of shape `[height, width, 1]`.
crop_height: The new height.
crop_width: The new width.
ignore_label: Label class to be ignored.
Returns:
Cropped and/or padded image.
If `images` was 3-D, a 3-D float Tensor of shape
`[new_height, new_width, channels]`.
"""
label = label - ignore_label # Subtract due to 0 padding.
label = tf.to_float(label)
image_height = tf.shape(image)[0]
image_width = tf.shape(image)[1]
image_and_label = tf.concat([image, label], axis=2)
image_and_label_pad = tf.image.pad_to_bounding_box(
image_and_label, 0, 0,
tf.maximum(crop_height, image_height),
tf.maximum(crop_width, image_width))
image_and_label_crop = tf.random_crop(
image_and_label_pad, [crop_height, crop_width, 4])
image_crop = image_and_label_crop[:, :, :3]
label_crop = image_and_label_crop[:, :, 3:]
label_crop += ignore_label
label_crop = tf.to_int32(label_crop)
return image_crop, label_crop
def random_flip_left_right_image_and_label(image, label):
"""Randomly flip an image and label horizontally (left to right).
Args:
image: A 3-D tensor of shape `[height, width, channels].`
label: A 3-D tensor of shape `[height, width, 1].`
Returns:
A 3-D tensor of the same type and shape as `image`.
A 3-D tensor of the same type and shape as `label`.
"""
uniform_random = tf.random_uniform([], 0, 1.0)
mirror_cond = tf.less(uniform_random, .5)
image = tf.cond(mirror_cond, lambda: tf.reverse(image, [1]), lambda: image)
label = tf.cond(mirror_cond, lambda: tf.reverse(label, [1]), lambda: label)
return image, label
def eval_input_fn(image_filenames, label_filenames=None, batch_size=1):
"""An input function for evaluation and inference.
Args:
image_filenames: The file names for the inferred images.
label_filenames: The file names for the grand truth labels.
batch_size: The number of samples per batch. Need to be 1
for the images of different sizes.
Returns:
A tuple of images and labels.
"""
# Reads an image from a file, decodes it into a dense tensor
def _parse_function(filename, is_label):
if not is_label:
image_filename, label_filename = filename, None
else:
image_filename, label_filename = filename
image_string = tf.read_file(image_filename)
image = tf.image.decode_image(image_string)
image = tf.to_float(tf.image.convert_image_dtype(image, dtype=tf.uint8))
image.set_shape([None, None, 3])
image = mean_image_subtraction(image)
if not is_label:
return image
else:
label_string = tf.read_file(label_filename)
label = tf.image.decode_image(label_string)
label = tf.to_int32(tf.image.convert_image_dtype(label, dtype=tf.uint8))
label.set_shape([None, None, 1])
return image, label
if label_filenames is None:
input_filenames = image_filenames
else:
input_filenames = (image_filenames, label_filenames)
dataset = tf.data.Dataset.from_tensor_slices(input_filenames)
if label_filenames is None:
dataset = dataset.map(lambda x: _parse_function(x, False))
else:
dataset = dataset.map(lambda x, y: _parse_function((x, y), True))
dataset = dataset.prefetch(batch_size)
dataset = dataset.batch(batch_size)
iterator = dataset.make_one_shot_iterator()
if label_filenames is None:
images = iterator.get_next()
labels = None
else:
images, labels = iterator.get_next()
return images, labels