-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmain.py
178 lines (163 loc) · 5.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
import matplotlib.pyplot as plt
from pykalman import KalmanFilter
import lstm
import transformer
import time
import torch
random_state = np.random.RandomState(0)
torch.manual_seed(0)
T = 0.01
step = 200
'''
Step 1: Provide a de facto system
'''
A= np.array([[1,T, 0.5*T*T],
[ 0, 1,T],
[ 0, 0, 1]])
B= [0, 0, 0]
C= [1,0,0]
D= [0]
Q= 0.01*np.eye(3)
R= 0.005*np.eye(1)
m0= [ 0,0,0.1]
P0= 0.1*np.eye(3)
kft = KalmanFilter(
A,C,Q,R,B,D,m0,P0,
random_state=random_state
)# model should be
state, observation = kft.sample(
n_timesteps=step,
initial_state=m0
)# provide data
#filtered_state_estimatet, f_covt = kft.filter(observation)
#smoothed_state_estimatet, s_covt = kft.smooth(observation)
'''
Step 2: Initialize our model
'''
# specify parameters
transition_matrix = A
transition_offset = B
observation_matrix = C
observation_offset = D
transition_covariance = 0.02*np.eye(3)
observation_covariance = np.eye(1)
initial_state_mean =[0,0,1]
initial_state_covariance = 5*np.eye(3)
# sample from model
kf = KalmanFilter(
transition_matrix, observation_matrix, transition_covariance,
observation_covariance, transition_offset, observation_offset,initial_state_mean,initial_state_covariance,
random_state=random_state,
em_vars=[
#'transition_matrices', 'observation_matrices',
'transition_covariance','observation_covariance',
#'transition_offsets', 'observation_offsets',
'initial_state_mean', 'initial_state_covariance'
]
)
data = kf.sample(n_timesteps=step,initial_state=initial_state_mean)[1]
filtered_state_estimater, nf_cov = kf.filter(observation)
smoothed_state_estimater, ns_cov = kf.smooth(observation)
'''
Step 3: Learn good values for parameters named in `em_vars` using the EM algorithm
'''
def compute_tr(a):
size = a.shape[0]
return (np.trace(a)/size)*np.eye(size)
def test(data,method='TL',n_iteration=10):
t_start = time.process_time()
if method == 'TL':
print('----transformer+lstm----')
data,loss_list = transformer.train(data,step)
data,loss_list = lstm.train(data)
labelfilter = 'TL-KF'
labelsmooth = 'TL-KS'
elif method == 'L':
print('----lstm----')
data,loss_list = lstm.train(data)
labelfilter = 'LSTM-KF'
labelsmooth = 'LSTM-KS'
elif method == 'T':
print('----transformer----')
data,loss_list = transformer.train(data,step)
labelfilter = 'Transformer-KF'
labelsmooth = 'Transformer-KS'
else:
print('----EM----')
labelfilter = 'EM-KF'
labelsmooth = 'EM-KS'
t_train = time.process_time()
kfem = kf.em(X=data, n_iter=n_iteration)
t_em = time.process_time()
print('train-time/sec',t_train-t_start)
print('em-time/sec',t_em-t_train)
Qem = compute_tr(kfem.transition_covariance)
Rem = compute_tr(kfem.observation_covariance)
P0em = compute_tr(kfem.initial_state_covariance)
m0em = [0,0,np.abs(kfem.initial_state_mean[2])]
print('Q=',Qem)
print('R=',Rem)
print('m0=',m0em)
print('P0=',P0em)
kfem = KalmanFilter(
A,C,Qem,Rem,B,D,m0em,P0em,
random_state=random_state
)
#obsem = kfem.sample(n_timesteps=step,initial_state=m0)[1]
filtered_state_estimates, f_cov = kfem.filter(observation)
smoothed_state_estimates, s_cov = kfem.smooth(observation)
return filtered_state_estimates, f_cov, smoothed_state_estimates, s_cov,labelfilter,labelsmooth
# draw estimates
filtered_state_estimates, f_cov, smoothed_state_estimates, s_cov, labelfilter,labelsmooth = test(data[:,0],n_iteration=10)
#print('emkf=',filtered_state_estimates[:,0].tolist())
#print('emks=',smoothed_state_estimates[:,0].tolist())
filtered_delta_estimater = filtered_state_estimater[:,0] - state[:,0]
smoothed_delta_estimater = smoothed_state_estimater[:,0] - state[:,0]
filtered_delta_estimates = filtered_state_estimates[:,0] - state[:,0]
smoothed_delta_estimates = smoothed_state_estimates[:,0] - state[:,0]
'''
filtered_delta_estimates_lstm = filtered_state_estimates_lstm[:,0] - state[:,0]
smoothed_delta_estimates_lstm = smoothed_state_estimates_lstm[:,0] - state[:,0]
filtered_delta_estimates_tranf = filtered_state_estimates_tranf[:,0] - state[:,0]
smoothed_delta_estimates_tranf = smoothed_state_estimates_tranf[:,0] - state[:,0]
'''
#smoothed_delta_estimates[step-1] = smoothed_delta_estimates[step-3]
# lines_true = plt.plot(state[:,0],state[:,1] ,color='c',label='true')
#lines_model = plt.plot(state, color='m')
msefr = np.linalg.norm(filtered_delta_estimater)**2/step
msesr = np.linalg.norm(smoothed_delta_estimater)**2/step
msefs = np.linalg.norm(filtered_delta_estimates)**2/step
msess = np.linalg.norm(smoothed_delta_estimates)**2/step
print('----MSE----')
print('KF',msefr)
print('KS',msesr)
print(labelfilter,msefs)
print(labelsmooth,msess)
#draw
taxis = np.linspace(0,step*T,step)
plt.figure()
lines_filter = plt.scatter(taxis,state[:,0], color='c',label='True')
lines_filter = plt.plot(taxis,filtered_state_estimater[:,0], 'r',label='KF')
lines_smoother = plt.plot(taxis,smoothed_state_estimater[:,0], 'r--',label='KS')
lines_filt = plt.plot(taxis,filtered_state_estimates[:,0], 'b',label=labelfilter)
lines_smooth = plt.plot(taxis,smoothed_state_estimates[:,0], 'b--',label=labelsmooth)
plt.xlim(0,step*T)
plt.xlabel('Time/s')
plt.ylabel('x/m')
plt.legend()
plt.grid()
plt.figure()
dlines_filter = plt.plot(taxis,filtered_delta_estimater, 'r',label='KF')
dlines_smoother = plt.plot(taxis,smoothed_delta_estimater, 'r--',label='KS')
dlines_filt = plt.plot(taxis,filtered_delta_estimates, 'b',label=labelfilter)
dlines_smooth = plt.plot(taxis,smoothed_delta_estimates, 'b--',label=labelsmooth)
#plt.plot(observation[:,0] - state[:,0],color='c')
plt.xlim(0,step*T)
plt.xlabel('Time/s')
plt.ylabel('Error/m')
plt.legend()
plt.grid()
plt.show()
#lines_filt1 = plt.plot(filtered_state_estimates1, color='b')
#lines_smooth1 = plt.plotsmoothed_delta_estimates1, color='k')