-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathtrain_DANet.py
executable file
·340 lines (311 loc) · 15.4 KB
/
train_DANet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2019-01-10 22:41:49
import os
import sys
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as uData
from networks import UNetD, UNetG, DiscriminatorLinear, sample_generator
from datasets.DenoisingDatasets import BenchmarkTrain, BenchmarkTest
from math import ceil
from utils import *
from loss import mean_match, get_gausskernel, gradient_penalty
import torchvision.utils as vutils
from torch.utils.tensorboard import SummaryWriter
import shutil
import warnings
from pathlib import Path
import commentjson as json
# filter warnings
warnings.simplefilter('ignore', Warning, lineno=0)
# default dtype
torch.set_default_dtype(torch.float32)
_C = 3
_modes = ['train', 'val']
def train_step_P(net, x, y, optimizerP, args):
alpha = args['alpha']
batch_size =x.shape[0]
# zero the gradient
net['P'].zero_grad()
# raal data
real_data = torch.cat([x,y], 1)
real_loss = net['P'](real_data).mean()
# generator fake data
with torch.autograd.no_grad():
fake_y = sample_generator(net['G'], x)
fake_y_data = torch.cat([x, fake_y], 1)
fake_y_loss = net['P'](fake_y_data.data).mean()
grad_y_loss = gradient_penalty(real_data, fake_y_data, net['P'], args['lambda_gp'])
loss_y = alpha * (fake_y_loss - real_loss)
loss_yg = alpha * grad_y_loss
# Denoiser fake data
with torch.autograd.no_grad():
fake_x = y - net['D'](y)
fake_x_data = torch.cat([fake_x, y], 1)
fake_x_loss = net['P'](fake_x_data.data).mean()
grad_x_loss = gradient_penalty(real_data, fake_x_data, net['P'], args['lambda_gp'])
loss_x = (1-alpha) * (fake_x_loss - real_loss)
loss_xg = (1-alpha) * grad_x_loss
loss = loss_x + loss_xg + loss_y + loss_yg
# backward
loss.backward()
optimizerP.step()
return loss, loss_x, loss_xg, loss_y, loss_yg
def train_step_G(net, x, y, optimizerG, args):
alpha = args['alpha']
batch_size = x.shape[0]
# zero the gradient
net['G'].zero_grad()
fake_y = sample_generator(net['G'], x)
loss_mean = args['tau_G'] * mean_match(x, y, fake_y, kernel.to(x.device), _C)
fake_y_data = torch.cat([x, fake_y], 1)
fake_y_loss = net['P'](fake_y_data).mean()
loss_y = -alpha * fake_y_loss
loss = loss_y + loss_mean
# backward
loss.backward()
optimizerG.step()
return loss, loss_y, loss_mean, fake_y.data
def train_step_D(net, x, y, optimizerD, args):
alpha = args['alpha']
batch_size = x.shape[0]
# zero the gradient
net['D'].zero_grad()
fake_x = y -net['D'](y)
mae_loss = F.l1_loss(fake_x, x, reduction='mean')
fake_x_data = torch.cat([fake_x, y], 1)
fake_x_loss = net['P'](fake_x_data).mean()
loss_x = -(1-alpha) * fake_x_loss
loss_e = args['tau_D'] * mae_loss
loss = loss_x + loss_e
# backward
loss.backward()
optimizerD.step()
return loss, loss_x, loss_e, mae_loss, fake_x.data
def train_epoch(net, datasets, optimizer, lr_scheduler, args):
batch_size = {'train':args['batch_size'], 'val':4}
data_loader = {phase:uData.DataLoader(datasets[phase], batch_size=batch_size[phase],
shuffle=True, num_workers=args['num_workers'], pin_memory=True) for phase in _modes}
num_data = {phase:len(datasets[phase]) for phase in _modes}
num_iter_epoch = {phase: ceil(num_data[phase] / batch_size[phase]) for phase in _modes}
step = args['step'] if args['resume'] else 0
step_img = args['step_img'] if args['resume'] else {x:0 for x in _modes}
writer = SummaryWriter(str(Path(args['log_dir'])))
for epoch in range(args['epoch_start'], args['epochs']):
loss_epoch = {x:0 for x in ['PL', 'DL', 'GL']}
subloss_epoch = {x:0 for x in ['Px', 'Pxg', 'Py', 'Pyg', 'Dx', 'DE', 'DAE', 'Gy', 'GMean',
'GErr', 'TGErr']}
mae_epoch = {'train':0, 'val':0}
tic = time.time()
# train stage
net['D'].train()
net['G'].train()
net['P'].train()
lr_D = optimizer['D'].param_groups[0]['lr']
lr_G = optimizer['G'].param_groups[0]['lr']
lr_P = optimizer['P'].param_groups[0]['lr']
if lr_D < 1e-6:
sys.exit('Reach the minimal learning rate')
phase = 'train'
iter_GD = 0
for ii, data in enumerate(data_loader[phase]):
im_noisy, im_gt = [x.cuda() for x in data]
# update the netP
PL, Px, Pxg, Py, Pyg = train_step_P(net, im_gt, im_noisy, optimizer['P'], args)
loss_epoch['PL'] += PL.item()
subloss_epoch['Px'] += Px.item()
subloss_epoch['Pxg'] += Pxg.item()
subloss_epoch['Py'] += Py.item()
subloss_epoch['Pyg'] += Pyg.item()
# update the netD
if (ii+1) % args['num_critic'] == 0:
DL, Dx, DE, DAE, im_denoise = train_step_D(net, im_gt, im_noisy, optimizer['D'], args)
loss_epoch['DL'] += DL.item()
subloss_epoch['Dx'] += Dx.item()
subloss_epoch['DE'] += DE.item()
subloss_epoch['DAE'] += DAE.item()
mae_epoch[phase] += DAE.item()
# update the netG
GL, Gy, GMean, im_generate = train_step_G(net, im_gt, im_noisy, optimizer['G'], args)
loss_epoch['GL'] += GL.item()
subloss_epoch['Gy'] += Gy.item()
subloss_epoch['GMean'] += GMean.item()
GErr = F.l1_loss(im_generate, im_gt, reduction='mean')
subloss_epoch['GErr'] += GErr.item()
TGErr = F.l1_loss(im_noisy, im_gt, reduction='mean')
subloss_epoch['TGErr'] += TGErr.item()
iter_GD += 1
if (ii+1) % args['print_freq'] ==0:
template = '[Epoch:{:>2d}/{:<3d}] {:s}:{:0>5d}/{:0>5d}, PLx:{:>6.2f}/{:4.2f},'+\
' PLy:{:>6.2f}/{:4.2f}, DL:{:>6.2f}/{:.1e}, DAE:{:.2e}, '+\
'GL:{:>6.2f}/{:<5.2f}, GErr:{:.1e}/{:.1e}'
print(template.format(epoch+1, args['epochs'], phase, ii+1, num_iter_epoch[phase],
Px.item(), Pxg.item(), Py.item(), Pyg.item(), Dx.item(), DE.item(),
DAE.item(), Gy.item(), GMean.item(), GErr.item(), TGErr.item()))
writer.add_scalar('Train PNet Loss Iter', PL.item(), step)
writer.add_scalar('Train DNet Loss Iter', DL.item(), step)
writer.add_scalar('Train GNet Loss Iter', GL.item(), step)
step += 1
if (ii+1) % (10*args['print_freq'])==0:
x1 = vutils.make_grid(im_noisy, normalize=True, scale_each=True)
writer.add_image(phase+' Noisy Image', x1, step_img[phase])
x2 = vutils.make_grid(im_gt, normalize=True, scale_each=True)
writer.add_image(phase+' GroundTruth', x2, step_img[phase])
x3 = vutils.make_grid(im_denoise.clamp_(0.0,1.0), normalize=True,
scale_each=True)
writer.add_image(phase+' Denoised images', x3, step_img[phase])
x4 = vutils.make_grid(im_generate.clamp_(0.0, 1.0), normalize=True,
scale_each=True)
writer.add_image(phase+' Generated images', x4, step_img[phase])
step_img[phase] += 1
loss_epoch['PL'] /= (ii+1)
subloss_epoch['Px'] /= (ii+1)
subloss_epoch['Pxg'] /= (ii+1)
subloss_epoch['Py'] /= (ii+1)
subloss_epoch['Pyg'] /= (ii+1)
loss_epoch['DL'] /= (iter_GD+1)
subloss_epoch['Dx'] /= (iter_GD+1)
subloss_epoch['DAE'] /= (iter_GD+1)
mae_epoch[phase] /= (iter_GD +1)
loss_epoch['GL'] /= (iter_GD+1)
subloss_epoch['Gy'] /= (iter_GD+1)
subloss_epoch['GMean'] /= (iter_GD+1)
subloss_epoch['GErr'] /= (iter_GD+1)
subloss_epoch['TGErr'] /= (iter_GD+1)
template = '{:s}: PL={:5.2f}, DL={:5.2f}, GL={:5.2f}, DAE:{:4.2e}, GMean:{:4.2e}, ' +\
'GE:{:.2e}/{:.2e}, tauDG:{:.1e}/{:.1e}, lrDGP:{:.2e}/{:.2e}/{:.2e}'
print(template.format(phase, loss_epoch['PL'], loss_epoch['DL'], loss_epoch['GL'],
subloss_epoch['DAE'], subloss_epoch['GMean'], subloss_epoch['GErr'],
subloss_epoch['TGErr'], args['tau_D'], args['tau_G'], lr_D, lr_G, lr_P))
print('-'*150)
# test stage
net['D'].eval()
psnr_per_epoch = ssim_per_epoch = 0
phase = 'val'
for ii, data in enumerate(data_loader[phase]):
im_noisy, im_gt = [x.cuda() for x in data]
with torch.set_grad_enabled(False):
im_denoise = im_noisy - net['D'](im_noisy)
mae_iter = F.l1_loss(im_denoise, im_gt)
im_denoise.clamp_(0.0, 1.0)
mae_epoch[phase] += mae_iter
psnr_iter = batch_PSNR(im_denoise, im_gt)
psnr_per_epoch += psnr_iter
ssim_iter = batch_SSIM(im_denoise, im_gt)
ssim_per_epoch += ssim_iter
# print statistics every log_interval mini_batches
if (ii+1) % 50 == 0:
log_str = '[Epoch:{:>2d}/{:<2d}] {:s}:{:0>3d}/{:0>3d}, mae={:.2e}, ' + \
'psnr={:4.2f}, ssim={:5.4f}'
print(log_str.format(epoch+1, args['epochs'], phase, ii+1, num_iter_epoch[phase],
mae_iter, psnr_iter, ssim_iter))
# tensorboard summary
x1 = vutils.make_grid(im_denoise, normalize=True, scale_each=True)
writer.add_image(phase+' Denoised images', x1, step_img[phase])
x2 = vutils.make_grid(im_gt, normalize=True, scale_each=True)
writer.add_image(phase+' GroundTruth', x2, step_img[phase])
x5 = vutils.make_grid(im_noisy, normalize=True, scale_each=True)
writer.add_image(phase+' Noisy Image', x5, step_img[phase])
step_img[phase] += 1
psnr_per_epoch /= (ii+1)
ssim_per_epoch /= (ii+1)
mae_epoch[phase] /= (ii+1)
print('{:s}: mae={:.3e}, PSNR={:4.2f}, SSIM={:5.4f}'.format(phase, mae_epoch[phase],
psnr_per_epoch, ssim_per_epoch))
print('-'*150)
# adjust the learning rate
lr_scheduler['D'].step()
lr_scheduler['G'].step()
lr_scheduler['P'].step()
# save model
model_prefix = 'model_'
save_path_model = str(Path(args['model_dir']) / (model_prefix+str(epoch+1)))
torch.save({
'epoch': epoch+1,
'step': step+1,
'step_img': {x:step_img[x]+1 for x in _modes},
'model_state_dict': {x: net[x].state_dict() for x in ['D', 'P', 'G']},
'optimizer_state_dict': {x: optimizer[x].state_dict() for x in ['D', 'P', 'G']},
'lr_scheduler_state_dict': {x: lr_scheduler[x].state_dict() for x in ['D', 'P', 'G']}
}, save_path_model)
model_prefix = 'model_state_'
save_path_model = str(Path(args['model_dir']) / (model_prefix+str(epoch+1)+'.pt'))
torch.save({x:net[x].state_dict() for x in ['D', 'G']}, save_path_model)
writer.add_scalars('MAE_epoch', mae_epoch, epoch)
writer.add_scalar('Val PSNR epoch', psnr_per_epoch, epoch)
writer.add_scalar('Val SSIM epoch', ssim_per_epoch, epoch)
toc = time.time()
print('This epoch take time {:.2f}'.format(toc-tic))
writer.close()
print('Reach the maximal epochs! Finish training')
def main():
# set parameters
with open('./configs/DANet.json', 'r') as f:
args = json.load(f)
# set the available GPUs
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = str(args['gpu_id'])
# build up the denoiser
netD= UNetD(_C, wf=args['wf'], depth=args['depth']).cuda()
# build up the generator
netG= UNetG(_C, wf=args['wf'], depth=args['depth']).cuda()
# build up the discriminator
netP = DiscriminatorLinear(_C*2, ndf=args['ndf']).cuda()
net = {'D':netD, 'G':netG, 'P':netP}
# optimizer
optimizerD = optim.Adam(netD.parameters(), lr=args['lr_D'])
optimizerG = optim.Adam(netG.parameters(), lr=args['lr_G'], betas=(0.5, 0.90))
optimizerP = optim.Adam(netP.parameters(), lr=args['lr_P'], betas=(0.5, 0.90))
optimizer = {'D':optimizerD, 'G':optimizerG, 'P':optimizerP}
# schular
schedulerD = optim.lr_scheduler.MultiStepLR(optimizerD, args['milestones'], gamma=0.5)
schedulerG = optim.lr_scheduler.MultiStepLR(optimizerG, args['milestones'], gamma=0.5)
schedulerP = optim.lr_scheduler.MultiStepLR(optimizerP, args['milestones'], gamma=0.5)
scheduler = {'D':schedulerD, 'G':schedulerG, 'P':schedulerP}
if args['resume']:
if Path(args['resume']).is_file():
print('=> Loading checkpoint {:s}'.format(str(Path(args['resume']))))
checkpoint = torch.load(str(Path(args['resume'])), map_location='cpu')
args['epoch_start'] = checkpoint['epoch']
args['step'] = checkpoint['step']
args['step_img'] = checkpoint['step_img']
optimizerD.load_state_dict(checkpoint['optimizer_state_dict']['D'])
optimizerG.load_state_dict(checkpoint['optimizer_state_dict']['G'])
optimizerP.load_state_dict(checkpoint['optimizer_state_dict']['P'])
schedulerD.load_state_dict(checkpoint['lr_scheduler_state_dict']['D'])
schedulerG.load_state_dict(checkpoint['lr_scheduler_state_dict']['G'])
schedulerP.load_state_dict(checkpoint['lr_scheduler_state_dict']['P'])
netD.load_state_dict(checkpoint['model_state_dict']['D'])
netG.load_state_dict(checkpoint['model_state_dict']['G'])
netP.load_state_dict(checkpoint['model_state_dict']['P'])
print('=> Loaded checkpoint {:s} (epoch {:d})'.format(args['resume'], checkpoint['epoch']))
else:
sys.exit('Please provide corrected model path!')
else:
args['epoch_start'] = 0
if Path(args['log_dir']).is_dir():
shutil.rmtree(args['log_dir'])
Path(args['log_dir']).mkdir()
if Path(args['model_dir']).is_dir():
shutil.rmtree(args['model_dir'])
Path(args['model_dir']).mkdir()
for key, value in args.items():
print('{:<15s}: {:s}'.format(key, str(value)))
# making dataset
datasets = {'train':BenchmarkTrain(h5_file=args['SIDD_train_h5'],
length=5000*args['batch_size']*args['num_critic'],
pch_size=args['patch_size'],
mask=False),
'val':BenchmarkTest(args['SIDD_test_h5'])}
# build the Gaussian kernel for loss
global kernel
kernel = get_gausskernel(args['ksize'], chn=_C)
# train model
print('\nBegin training with GPU: ' + str(args['gpu_id']))
train_epoch(net, datasets, optimizer, scheduler, args)
if __name__ == '__main__':
main()