-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathutils.py
executable file
·135 lines (118 loc) · 4.32 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2019-01-22 22:07:08
import math
import torch
import torch.nn.functional as F
from skimage import img_as_ubyte
from loss import get_gausskernel, gaussblur
import numpy as np
import cv2
def ssim(img1, img2):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def calculate_ssim(img1, img2, border=0):
'''calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255]
'''
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
h, w = img1.shape[:2]
img1 = img1[border:h-border, border:w-border]
img2 = img2[border:h-border, border:w-border]
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
def calculate_psnr(im1, im2, border=0):
if not im1.shape == im2.shape:
raise ValueError('Input images must have the same dimensions.')
h, w = im1.shape[:2]
im1 = im1[border:h-border, border:w-border]
im2 = im2[border:h-border, border:w-border]
im1 = im1.astype(np.float64)
im2 = im2.astype(np.float64)
mse = np.mean((im1 - im2)**2)
if mse == 0:
return float('inf')
return 20 * math.log10(255.0 / math.sqrt(mse))
def batch_PSNR(img, imclean, border=0):
Img = img.data.cpu().numpy()
Iclean = imclean.data.cpu().numpy()
Img = img_as_ubyte(Img)
Iclean = img_as_ubyte(Iclean)
PSNR = 0
for i in range(Img.shape[0]):
PSNR += calculate_psnr(Iclean[i,:,].transpose((1,2,0)), Img[i,:,].transpose((1,2,0)), border)
return (PSNR/Img.shape[0])
def batch_SSIM(img, imclean, border=0):
Img = img.data.cpu().numpy()
Iclean = imclean.data.cpu().numpy()
Img = img_as_ubyte(Img)
Iclean = img_as_ubyte(Iclean)
SSIM = 0
for i in range(Img.shape[0]):
SSIM += calculate_ssim(Iclean[i,:,].transpose((1,2,0)), Img[i,:,].transpose((1,2,0)), border)
return (SSIM/Img.shape[0])
def kl_gauss_zero_center(sigma_fake, sigma_real):
'''
Input:
sigma_fake: 1 x C x H x W, torch array
sigma_real: 1 x C x H x W, torch array
'''
div_sigma = torch.div(sigma_fake, sigma_real)
div_sigma.clamp_(min=0.1, max=10)
log_sigma = torch.log(1 / div_sigma)
distance = 0.5 * torch.mean(log_sigma + div_sigma - 1.)
return distance
def estimate_sigma_gauss(img_noisy, img_gt):
win_size = 7
err2 = (img_noisy - img_gt) ** 2
kernel = get_gausskernel(win_size, chn=3).to(img_gt.device)
sigma = gaussblur(err2, kernel, win_size, chn=3)
sigma.clamp_(min=1e-10)
return sigma
class PadUNet:
'''
im: N x C x H x W torch tensor
dep_U: depth of UNet
'''
def __init__(self, im, dep_U, mode='reflect'):
self.im_old = im
self.dep_U = dep_U
self.mode = mode
self.H_old = im.shape[2]
self.W_old = im.shape[3]
def pad(self):
lenU = 2 ** (self.dep_U-1)
padH = 0 if ((self.H_old % lenU) == 0) else (lenU - (self.H_old % lenU))
padW = 0 if ((self.W_old % lenU) == 0) else (lenU - (self.W_old % lenU))
padding = (0, padW, 0, padH)
out = F.pad(self.im_old, pad=padding, mode=self.mode)
return out
def pad_inverse(self, im_new):
return im_new[:, :, :self.H_old, :self.W_old]