-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathapp.py
186 lines (157 loc) · 6.96 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2024-12-11 17:17:41
import warnings
warnings.filterwarnings("ignore")
import argparse
import numpy as np
import gradio as gr
from pathlib import Path
from omegaconf import OmegaConf
from sampler_invsr import InvSamplerSR
import os
from tqdm import tqdm
from utils import util_common
from utils import util_image
from basicsr.utils.download_util import load_file_from_url
def get_configs(num_steps=1, chopping_size=128, seed=12345):
configs = OmegaConf.load("./configs/sample-sd-turbo.yaml")
if num_steps == 1:
configs.timesteps = [200,]
elif num_steps == 2:
configs.timesteps = [200, 100]
elif num_steps == 3:
configs.timesteps = [200, 100, 50]
elif num_steps == 4:
configs.timesteps = [200, 150, 100, 50]
elif num_steps == 5:
configs.timesteps = [250, 200, 150, 100, 50]
else:
assert num_steps <= 250
configs.timesteps = np.linspace(
start=250, stop=0, num=num_steps, endpoint=False, dtype=np.int64()
).tolist()
print(f'Setting timesteps for inference: {configs.timesteps}')
configs.sd_path = "./weights"
util_common.mkdir(configs.sd_path, delete=False, parents=True)
configs.sd_pipe.params.cache_dir = configs.sd_path
started_ckpt_name = "noise_predictor_sd_turbo_v5.pth"
started_ckpt_dir = "./weights"
util_common.mkdir(started_ckpt_dir, delete=False, parents=True)
started_ckpt_path = Path(started_ckpt_dir) / started_ckpt_name
if not started_ckpt_path.exists():
load_file_from_url(
url="https://huggingface.co/OAOA/InvSR/resolve/main/noise_predictor_sd_turbo_v5.pth",
model_dir=started_ckpt_dir,
progress=True,
file_name=started_ckpt_name,
)
configs.model_start.ckpt_path = str(started_ckpt_path)
configs.bs = 1
configs.seed = seed
configs.basesr.chopping.pch_size = chopping_size
configs.basesr.chopping.extra_bs = 4
return configs
def predict_single(in_path, num_steps=1, chopping_size=128, seed=12345):
configs = get_configs(num_steps=num_steps, chopping_size=chopping_size, seed=seed)
sampler = InvSamplerSR(configs)
out_dir = Path('invsr_output')
if not out_dir.exists():
out_dir.mkdir()
sampler.inference(in_path, out_path=out_dir, bs=1)
out_path = out_dir / f"{Path(in_path).stem}.png"
assert out_path.exists(), 'Super-resolution failed!'
im_sr = util_image.imread(out_path, chn="rgb", dtype="uint8")
return im_sr, str(out_path)
def process_batch(input_dir, num_steps=1, chopping_size=128, seed=12345, progress=gr.Progress()):
input_path = Path(input_dir)
output_path = input_path / 'invsr_output'
output_path.mkdir(exist_ok=True)
configs = get_configs(num_steps=num_steps, chopping_size=chopping_size, seed=seed)
sampler = InvSamplerSR(configs)
image_files = list(input_path.glob('*.jpg')) + list(input_path.glob('*.png')) + list(input_path.glob('*.jpeg'))
total_files = len(image_files)
if total_files == 0:
return f"No image files found in {input_dir}"
progress(0, desc="Processing images")
for idx, img_path in enumerate(image_files):
out_path = output_path / f"{img_path.stem}.png"
sampler.inference(str(img_path), out_path=output_path, bs=1)
progress((idx + 1)/total_files, desc=f"Processing image {idx + 1}/{total_files}")
return f"Processed {total_files} images. Results saved in {output_path}"
title = "Arbitrary-steps Image Super-resolution via Diffusion Inversion"
article = r"""
If you've found InvSR useful for your research or projects, please show your support by ⭐ the <a href='https://github.com/zsyOAOA/InvSR' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/zsyOAOA/InvSR?affiliations=OWNER&color=green&style=social)](https://github.com/zsyOAOA/InvSR)
---
If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{yue2024invsr,
title={Arbitrary-steps Image Super-resolution via Diffusion Inversion},
author={Yue, Zongsheng and Liao, Kang and Loy, Chen Change},
journal={arXiv preprint arXiv:2412.09013},
year={2024}
}
```
📋 **License**
This project is licensed under <a rel="license" href="https://github.com/zsyOAOA/InvSR/blob/master/LICENSE">S-Lab License 1.0</a>.
Redistribution and use for non-commercial purposes should follow this license.
📧 **Contact**
If you have any questions, please feel free to contact me via <b>[email protected]</b>.
![visitors](https://visitor-badge.laobi.icu/badge?page_id=zsyOAOA/InvSR)
"""
description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/zsyOAOA/InvSR' target='_blank'><b>Arbitrary-steps Image Super-resolution via Diffuion Inversion</b></a>.<br>
🔥 InvSR is an image super-resolution method via Diffusion Inversion, supporting arbitrary sampling steps.<br>
"""
with gr.Blocks() as demo:
gr.Markdown(f"# {title}")
gr.Markdown(description)
with gr.Tabs():
with gr.Tab("Single Image"):
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Input: Low Quality Image")
num_steps = gr.Dropdown(
choices=[1,2,3,4,5],
value=1,
label="Number of steps",
)
chopping_size = gr.Dropdown(
choices=[128, 256],
value=128,
label="Chopping size",
)
seed = gr.Number(value=12345, precision=0, label="Random seed")
process_btn = gr.Button("Process")
with gr.Column():
output_image = gr.Image(type="numpy", label="Output: High Quality Image")
output_file = gr.File(label="Download the output")
process_btn.click(
fn=predict_single,
inputs=[input_image, num_steps, chopping_size, seed],
outputs=[output_image, output_file]
)
with gr.Tab("Batch Processing"):
input_dir = gr.Textbox(label="Input Directory Path")
batch_num_steps = gr.Dropdown(
choices=[1,2,3,4,5],
value=1,
label="Number of steps",
)
batch_chopping_size = gr.Dropdown(
choices=[128, 256],
value=128,
label="Chopping size",
)
batch_seed = gr.Number(value=12345, precision=0, label="Random seed")
batch_btn = gr.Button("Process Folder")
output_text = gr.Textbox(label="Processing Status")
batch_btn.click(
fn=process_batch,
inputs=[input_dir, batch_num_steps, batch_chopping_size, batch_seed],
outputs=output_text
)
gr.Markdown(article)
demo.queue(max_size=5)
demo.launch(share=False)