-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathsd-turbo-sr-ldis.yaml
264 lines (251 loc) · 6.73 KB
/
sd-turbo-sr-ldis.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
trainer:
target: trainer.TrainerSDTurboSR
sd_pipe:
target: diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline
num_train_steps: 1000
enable_grad_checkpoint: True
compile: False
vae_split: 8
params:
pretrained_model_name_or_path: stabilityai/sd-turbo
cache_dir: weights
use_safetensors: True
torch_dtype: torch.float16
llpips:
target: latent_lpips.lpips.LPIPS
ckpt_path: weights/vgg16_sdturbo_lpips.pth
compile: False
params:
pretrained: False
net: vgg16
lpips: True
spatial: False
pnet_rand: False
pnet_tune: True
use_dropout: True
eval_mode: True
latent: True
in_chans: 4
verbose: True
model:
target: diffusers.models.autoencoders.NoisePredictor
ckpt_start_path: ~ # only used for training the intermidiate model
ckpt_path: ~ # For initializing
compile: False
params:
in_channels: 3
down_block_types:
- AttnDownBlock2D
- AttnDownBlock2D
up_block_types:
- AttnUpBlock2D
- AttnUpBlock2D
block_out_channels:
- 256 # 192, 256
- 512 # 384, 512
layers_per_block:
- 3
- 3
act_fn: silu
latent_channels: 4
norm_num_groups: 32
sample_size: 128
mid_block_add_attention: True
resnet_time_scale_shift: default
temb_channels: 512
attention_head_dim: 64
freq_shift: 0
flip_sin_to_cos: True
double_z: True
discriminator:
target: diffusers.models.unets.unet_2d_condition_discriminator.UNet2DConditionDiscriminator
enable_grad_checkpoint: True
compile: False
params:
sample_size: 64
in_channels: 4
center_input_sample: False
flip_sin_to_cos: True
freq_shift: 0
down_block_types:
- DownBlock2D
- CrossAttnDownBlock2D
- CrossAttnDownBlock2D
mid_block_type: UNetMidBlock2DCrossAttn
up_block_types:
- CrossAttnUpBlock2D
- CrossAttnUpBlock2D
- UpBlock2D
only_cross_attention: False
block_out_channels:
- 128
- 256
- 512
layers_per_block:
- 1
- 2
- 2
downsample_padding: 1
mid_block_scale_factor: 1
dropout: 0.0
act_fn: silu
norm_num_groups: 32
norm_eps: 1e-5
cross_attention_dim: 1024
transformer_layers_per_block: 1
reverse_transformer_layers_per_block: ~
encoder_hid_dim: ~
encoder_hid_dim_type: ~
attention_head_dim:
- 8
- 16
- 16
num_attention_heads: ~
dual_cross_attention: False
use_linear_projection: False
class_embed_type: ~
addition_embed_type: text
addition_time_embed_dim: 256
num_class_embeds: ~
upcast_attention: ~
resnet_time_scale_shift: default
resnet_skip_time_act: False
resnet_out_scale_factor: 1.0
time_embedding_type: positional
time_embedding_dim: ~
time_embedding_act_fn: ~
timestep_post_act: ~
time_cond_proj_dim: ~
conv_in_kernel: 3
conv_out_kernel: 3
projection_class_embeddings_input_dim: 2560
attention_type: default
class_embeddings_concat: False
mid_block_only_cross_attention: ~
cross_attention_norm: ~
addition_embed_type_num_heads: 64
degradation:
sf: 4
# the first degradation process
resize_prob: [0.2, 0.7, 0.1] # up, down, keep
resize_range: [0.15, 1.5]
gaussian_noise_prob: 0.5
noise_range: [1, 30]
poisson_scale_range: [0.05, 3.0]
gray_noise_prob: 0.4
jpeg_range: [30, 95]
# the second degradation process
second_order_prob: 0.5
second_blur_prob: 0.8
resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
resize_range2: [0.3, 1.2]
gaussian_noise_prob2: 0.5
noise_range2: [1, 25]
poisson_scale_range2: [0.05, 2.5]
gray_noise_prob2: 0.4
jpeg_range2: [30, 95]
gt_size: 512
resize_back: False
use_sharp: False
data:
train:
type: realesrgan
params:
data_source:
source1:
root_path: /mnt/sfs-common/zsyue/database/FFHQ
image_path: images1024
moment_path: ~
text_path: ~
im_ext: png
length: 20000
source2:
root_path: /mnt/sfs-common/zsyue/database/LSDIR/train
image_path: images
moment_path: ~
text_path: ~
im_ext: png
max_token_length: 77 # 77
io_backend:
type: disk
blur_kernel_size: 21
kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
sinc_prob: 0.1
blur_sigma: [0.2, 3.0]
betag_range: [0.5, 4.0]
betap_range: [1, 2.0]
blur_kernel_size2: 15
kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
sinc_prob2: 0.1
blur_sigma2: [0.2, 1.5]
betag_range2: [0.5, 4.0]
betap_range2: [1, 2.0]
final_sinc_prob: 0.8
gt_size: ${degradation.gt_size}
use_hflip: True
use_rot: False
random_crop: True
val:
type: base
params:
dir_path: /mnt/sfs-common/zsyue/projects/DifInv/SR/testingdata/imagenet512/lq
transform_type: default
transform_kwargs:
mean: 0.0
std: 1.0
extra_dir_path: /mnt/sfs-common/zsyue/projects/DifInv/SR/testingdata/imagenet512/gt
extra_transform_type: default
extra_transform_kwargs:
mean: 0.0
std: 1.0
im_exts: png
length: 16
recursive: False
train:
# predict started inverser
start_mode: True
# learning rate
lr: 5e-5 # learning rate
lr_min: 5e-5 # learning rate
lr_schedule: ~
warmup_iterations: 2000
# discriminator
lr_dis: 5e-5 # learning rate for dicriminator
weight_decay_dis: 1e-3 # weight decay for dicriminator
dis_init_iterations: 10000 # iterations used for updating the discriminator
dis_update_freq: 1
# dataloader
batch: 64
microbatch: 16
num_workers: 4
prefetch_factor: 2
use_text: True
# optimization settings
weight_decay: 0
ema_rate: 0.999
iterations: 200000 # total iterations
# logging
save_freq: 5000
log_freq: [200, 5000] # [training loss, training images, val images]
local_logging: True # manually save images
tf_logging: False # tensorboard logging
# loss
loss_type: L2
loss_coef:
ldif: 1.0
timesteps: [200, 100]
num_inference_steps: 5
# mixed precision
use_amp: True
use_fsdp: False
# random seed
seed: 123456
global_seeding: False
noise_detach: False
validate:
batch: 2
use_ema: True
log_freq: 4 # logging frequence
val_y_channel: True