-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathrealsr_realesrgan256_x2.yaml
166 lines (155 loc) · 4.14 KB
/
realsr_realesrgan256_x2.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
trainer:
target: trainer.TrainerDifIRLPIPS
autoencoder:
target: ldm.models.autoencoder.VQModelTorch
ckpt_path: weights/autoencoder_vq_f4.pth
use_fp16: True
params:
embed_dim: 3
n_embed: 8192
ddconfig:
double_z: False
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
padding_mode: zeros
model:
target: models.unet.UNetModelSwin
ckpt_path: ~
params:
image_size: 64
in_channels: 3
model_channels: 160
out_channels: ${autoencoder.params.embed_dim}
attention_resolutions: [64,32,16,8]
dropout: 0
channel_mult: [1, 2, 2, 4]
num_res_blocks: [2, 2, 2, 2]
conv_resample: True
dims: 2
use_fp16: False
num_head_channels: 32
use_scale_shift_norm: True
resblock_updown: False
swin_depth: 2
swin_embed_dim: 192
window_size: 8
mlp_ratio: 4
cond_lq: True
lq_size: 128
diffusion:
target: models.script_util.create_gaussian_diffusion
params:
sf: 2
schedule_name: exponential
schedule_kwargs:
power: 0.3
etas_end: 0.99
steps: 4
min_noise_level: 0.2
kappa: 2.0
weighted_mse: False
predict_type: xstart
timestep_respacing: ~
scale_factor: 1.0
normalize_input: True
latent_flag: True
degradation:
sf: 2
# the first degradation process
resize_prob: [0.2, 0.7, 0.1] # up, down, keep
resize_range: [0.15, 1.5]
gaussian_noise_prob: 0.5
noise_range: [1, 30]
poisson_scale_range: [0.05, 3.0]
gray_noise_prob: 0.4
jpeg_range: [30, 95]
# the second degradation process
second_order_prob: 0.5
second_blur_prob: 0.8
resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
resize_range2: [0.3, 1.2]
gaussian_noise_prob2: 0.5
noise_range2: [1, 25]
poisson_scale_range2: [0.05, 2.5]
gray_noise_prob2: 0.4
jpeg_range2: [30, 95]
gt_size: 256
resize_back: False
use_sharp: False
data:
train:
type: realesrgan
params:
dir_paths: []
txt_file_path: [
'/mnt/sfs-common/zsyue/database/ImageNet/files_txt/path_train_all.txt',
'/mnt/sfs-common/zsyue/database/FFHQ/files_txt/files256.txt',
]
im_exts: ['JPEG', ]
io_backend:
type: disk
blur_kernel_size: 21
kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
sinc_prob: 0.1
blur_sigma: [0.2, 3.0]
betag_range: [0.5, 4.0]
betap_range: [1, 2.0]
blur_kernel_size2: 15
kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
sinc_prob2: 0.1
blur_sigma2: [0.2, 1.5]
betag_range2: [0.5, 4.0]
betap_range2: [1, 2.0]
final_sinc_prob: 0.8
gt_size: 256
crop_pad_size: 300
use_hflip: True
use_rot: False
rescale_gt: True
train:
# learning rate
lr: 5e-5 # learning rate
lr_min: 2e-5 # learning rate
lr_schedule: cosin
warmup_iterations: 5000
# dataloader
batch: [96, 8]
microbatch: 12
num_workers: 6
prefetch_factor: 2
# optimization settings
weight_decay: 0
ema_rate: 0.999
iterations: 400000 # total iterations
# save logging
save_freq: 10000
log_freq: [200, 2000, 1] # [training loss, training images, val images]
loss_coef: [1.0, 1.0] # [mse, lpips]
local_logging: True # manually save images
tf_logging: False # tensorboard logging
# validation settings
use_ema_val: True
val_freq: ${train.save_freq}
val_y_channel: True
val_resolution: ${model.params.lq_size}
val_padding_mode: reflect
# training setting
use_amp: True # amp training
seed: 123456 # random seed
global_seeding: False
# model compile
compile:
flag: False
mode: reduce-overhead # default, reduce-overhead