-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathinference_resshift.py
206 lines (187 loc) · 7.92 KB
/
inference_resshift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2023-03-11 17:17:41
import os, sys
import argparse
from pathlib import Path
from omegaconf import OmegaConf
from sampler import ResShiftSampler
from utils.util_opts import str2bool
from basicsr.utils.download_util import load_file_from_url
_STEP = {
'v1': 15,
'v2': 15,
'v3': 4,
'bicsr': 4,
'inpaint_imagenet': 4,
'inpaint_face': 4,
'faceir': 4,
'deblur': 4,
}
_LINK = {
'vqgan': 'https://github.com/zsyOAOA/ResShift/releases/download/v2.0/autoencoder_vq_f4.pth',
'vqgan_face256': 'https://github.com/zsyOAOA/ResShift/releases/download/v2.0/celeba256_vq_f4_dim3_face.pth',
'vqgan_face512': 'https://github.com/zsyOAOA/ResShift/releases/download/v2.0/ffhq512_vq_f8_dim8_face.pth',
'v1': 'https://github.com/zsyOAOA/ResShift/releases/download/v2.0/resshift_realsrx4_s15_v1.pth',
'v2': 'https://github.com/zsyOAOA/ResShift/releases/download/v2.0/resshift_realsrx4_s15_v2.pth',
'v3': 'https://github.com/zsyOAOA/ResShift/releases/download/v2.0/resshift_realsrx4_s4_v3.pth',
'bicsr': 'https://github.com/zsyOAOA/ResShift/releases/download/v2.0/resshift_bicsrx4_s4.pth',
'inpaint_imagenet': 'https://github.com/zsyOAOA/ResShift/releases/download/v2.0/resshift_inpainting_imagenet_s4.pth',
'inpaint_face': 'https://github.com/zsyOAOA/ResShift/releases/download/v2.0/resshift_inpainting_face_s4.pth',
'faceir': 'https://github.com/zsyOAOA/ResShift/releases/download/v2.0/resshift_faceir_s4.pth',
'deblur': 'https://github.com/zsyOAOA/ResShift/releases/download/v2.0/resshift_deblur_s4.pth',
}
def get_parser(**parser_kwargs):
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument("-i", "--in_path", type=str, default="", help="Input path.")
parser.add_argument("-o", "--out_path", type=str, default="./results", help="Output path.")
parser.add_argument("--mask_path", type=str, default="", help="Mask path for inpainting.")
parser.add_argument("--scale", type=int, default=4, help="Scale factor for SR.")
parser.add_argument("--seed", type=int, default=12345, help="Random seed.")
parser.add_argument("--bs", type=int, default=1, help="Batch size.")
parser.add_argument(
"-v",
"--version",
type=str,
default="v1",
choices=["v1", "v2", "v3"],
help="Checkpoint version.",
)
parser.add_argument(
"--chop_size",
type=int,
default=512,
choices=[512, 256, 64],
help="Chopping forward.",
)
parser.add_argument(
"--chop_stride",
type=int,
default=-1,
help="Chopping stride.",
)
parser.add_argument(
"--task",
type=str,
default="realsr",
choices=['realsr', 'bicsr', 'inpaint_imagenet', 'inpaint_face', 'faceir', 'deblur'],
help="Chopping forward.",
)
args = parser.parse_args()
return args
def get_configs(args):
ckpt_dir = Path('./weights')
if not ckpt_dir.exists():
ckpt_dir.mkdir()
if args.task == 'realsr':
if args.version in ['v1', 'v2']:
configs = OmegaConf.load('./configs/realsr_swinunet_realesrgan256.yaml')
elif args.version == 'v3':
configs = OmegaConf.load('./configs/realsr_swinunet_realesrgan256_journal.yaml')
else:
raise ValueError(f"Unexpected version type: {args.version}")
assert args.scale == 4, 'We only support the 4x super-resolution now!'
ckpt_url = _LINK[args.version]
ckpt_path = ckpt_dir / f'resshift_{args.task}x{args.scale}_s{_STEP[args.version]}_{args.version}.pth'
vqgan_url = _LINK['vqgan']
vqgan_path = ckpt_dir / f'autoencoder_vq_f4.pth'
elif args.task == 'bicsr':
configs = OmegaConf.load('./configs/bicx4_swinunet_lpips.yaml')
assert args.scale == 4, 'We only support the 4x super-resolution now!'
ckpt_url = _LINK[args.task]
ckpt_path = ckpt_dir / f'resshift_{args.task}x{args.scale}_s{_STEP[args.task]}.pth'
vqgan_url = _LINK['vqgan']
vqgan_path = ckpt_dir / f'autoencoder_vq_f4.pth'
elif args.task == 'inpaint_imagenet':
configs = OmegaConf.load('./configs/inpaint_lama256_imagenet.yaml')
assert args.scale == 1, 'Please set scale equals 1 for image inpainting!'
ckpt_url = _LINK[args.task]
ckpt_path = ckpt_dir / f'resshift_{args.task}_s{_STEP[args.task]}.pth'
vqgan_url = _LINK['vqgan']
vqgan_path = ckpt_dir / f'autoencoder_vq_f4.pth'
elif args.task == 'inpaint_face':
configs = OmegaConf.load('./configs/inpaint_lama256_face.yaml')
assert args.scale == 1, 'Please set scale equals 1 for image inpainting!'
ckpt_url = _LINK[args.task]
ckpt_path = ckpt_dir / f'resshift_{args.task}_s{_STEP[args.task]}.pth'
vqgan_url = _LINK['vqgan_face256']
vqgan_path = ckpt_dir / f'celeba256_vq_f4_dim3_face.pth'
elif args.task == 'faceir':
configs = OmegaConf.load('./configs/faceir_gfpgan512_lpips.yaml')
assert args.scale == 1, 'Please set scale equals 1 for face restoration!'
ckpt_url = _LINK[args.task]
ckpt_path = ckpt_dir / f'resshift_{args.task}_s{_STEP[args.task]}.pth'
vqgan_url = _LINK['vqgan_face512']
vqgan_path = ckpt_dir / f'ffhq512_vq_f8_dim8_face.pth'
elif args.task == 'deblur':
configs = OmegaConf.load('./configs/deblur_gopro256.yaml')
assert args.scale == 1, 'Please set scale equals 1 for deblurring!'
ckpt_url = _LINK[args.task]
ckpt_path = ckpt_dir / f'resshift_{args.task}_s{_STEP[args.task]}.pth'
vqgan_url = _LINK['vqgan']
vqgan_path = ckpt_dir / f'autoencoder_vq_f4.pth'
else:
raise TypeError(f"Unexpected task type: {args.task}!")
# prepare the checkpoint
if not ckpt_path.exists():
load_file_from_url(
url=ckpt_url,
model_dir=ckpt_dir,
progress=True,
file_name=ckpt_path.name,
)
if not vqgan_path.exists():
load_file_from_url(
url=vqgan_url,
model_dir=ckpt_dir,
progress=True,
file_name=vqgan_path.name,
)
configs.model.ckpt_path = str(ckpt_path)
configs.diffusion.params.sf = args.scale
configs.autoencoder.ckpt_path = str(vqgan_path)
# save folder
if not Path(args.out_path).exists():
Path(args.out_path).mkdir(parents=True)
if args.chop_stride < 0:
if args.chop_size == 512:
chop_stride = (512 - 64) * (4 // args.scale)
elif args.chop_size == 256:
chop_stride = (256 - 32) * (4 // args.scale)
elif args.chop_size == 64:
chop_stride = (64 - 16) * (4 // args.scale)
else:
raise ValueError("Chop size must be in [512, 256]")
else:
chop_stride = args.chop_stride * (4 // args.scale)
args.chop_size *= (4 // args.scale)
print(f"Chopping size/stride: {args.chop_size}/{chop_stride}")
return configs, chop_stride
def main():
args = get_parser()
configs, chop_stride = get_configs(args)
resshift_sampler = ResShiftSampler(
configs,
sf=args.scale,
chop_size=args.chop_size,
chop_stride=chop_stride,
chop_bs=1,
use_amp=True,
seed=args.seed,
padding_offset=configs.model.params.get('lq_size', 64),
)
# setting mask path for inpainting
if args.task.startswith('inpaint'):
assert args.mask_path, 'Please input the mask path for inpainting!'
mask_path = args.mask_path
else:
mask_path = None
resshift_sampler.inference(
args.in_path,
args.out_path,
mask_path=mask_path,
bs=args.bs,
noise_repeat=False
)
if __name__ == '__main__':
main()