-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathtrainer.py
1113 lines (996 loc) · 48.6 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2022-05-18 13:04:06
import os, sys, math, time, random, datetime, functools
import lpips
import numpy as np
from pathlib import Path
from loguru import logger
from copy import deepcopy
from omegaconf import OmegaConf
from collections import OrderedDict
from einops import rearrange
from contextlib import nullcontext
from datapipe.datasets import create_dataset
from utils import util_net
from utils import util_common
from utils import util_image
from basicsr.utils import DiffJPEG, USMSharp
from basicsr.utils.img_process_util import filter2D
from basicsr.data.transforms import paired_random_crop
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
import torch
import torch.nn as nn
import torch.cuda.amp as amp
import torch.nn.functional as F
import torch.utils.data as udata
import torch.distributed as dist
import torch.multiprocessing as mp
import torchvision.utils as vutils
# from torch.utils.tensorboard import SummaryWriter
from torch.nn.parallel import DistributedDataParallel as DDP
class TrainerBase:
def __init__(self, configs):
self.configs = configs
# setup distributed training: self.num_gpus, self.rank
self.setup_dist()
# setup seed
self.setup_seed()
def setup_dist(self):
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
if mp.get_start_method(allow_none=True) is None:
mp.set_start_method('spawn')
rank = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(rank % num_gpus)
dist.init_process_group(
timeout=datetime.timedelta(seconds=3600),
backend='nccl',
init_method='env://',
)
self.num_gpus = num_gpus
self.rank = int(os.environ['LOCAL_RANK']) if num_gpus > 1 else 0
def setup_seed(self, seed=None, global_seeding=None):
if seed is None:
seed = self.configs.train.get('seed', 12345)
if global_seeding is None:
global_seeding = self.configs.train.global_seeding
assert isinstance(global_seeding, bool)
if not global_seeding:
seed += self.rank
torch.cuda.manual_seed(seed)
else:
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def init_logger(self):
if self.configs.resume:
assert self.configs.resume.endswith(".pth")
save_dir = Path(self.configs.resume).parents[1]
project_id = save_dir.name
else:
project_id = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M")
save_dir = Path(self.configs.save_dir) / project_id
if not save_dir.exists() and self.rank == 0:
save_dir.mkdir(parents=True)
# setting log counter
if self.rank == 0:
self.log_step = {phase: 1 for phase in ['train', 'val']}
self.log_step_img = {phase: 1 for phase in ['train', 'val']}
# text logging
logtxet_path = save_dir / 'training.log'
if self.rank == 0:
if logtxet_path.exists():
assert self.configs.resume
self.logger = logger
self.logger.remove()
self.logger.add(logtxet_path, format="{message}", mode='a', level='INFO')
self.logger.add(sys.stdout, format="{message}")
# tensorboard logging
log_dir = save_dir / 'tf_logs'
self.tf_logging = self.configs.train.tf_logging
if self.rank == 0 and self.tf_logging:
if not log_dir.exists():
log_dir.mkdir()
self.writer = SummaryWriter(str(log_dir))
# checkpoint saving
ckpt_dir = save_dir / 'ckpts'
self.ckpt_dir = ckpt_dir
if self.rank == 0 and (not ckpt_dir.exists()):
ckpt_dir.mkdir()
if 'ema_rate' in self.configs.train:
self.ema_rate = self.configs.train.ema_rate
assert isinstance(self.ema_rate, float), "Ema rate must be a float number"
ema_ckpt_dir = save_dir / 'ema_ckpts'
self.ema_ckpt_dir = ema_ckpt_dir
if self.rank == 0 and (not ema_ckpt_dir.exists()):
ema_ckpt_dir.mkdir()
# save images into local disk
self.local_logging = self.configs.train.local_logging
if self.rank == 0 and self.local_logging:
image_dir = save_dir / 'images'
if not image_dir.exists():
(image_dir / 'train').mkdir(parents=True)
(image_dir / 'val').mkdir(parents=True)
self.image_dir = image_dir
# logging the configurations
if self.rank == 0:
self.logger.info(OmegaConf.to_yaml(self.configs))
def close_logger(self):
if self.rank == 0 and self.tf_logging:
self.writer.close()
def resume_from_ckpt(self):
def _load_ema_state(ema_state, ckpt):
for key in ema_state.keys():
if key not in ckpt and key.startswith('module'):
ema_state[key] = deepcopy(ckpt[7:].detach().data)
elif key not in ckpt and (not key.startswith('module')):
ema_state[key] = deepcopy(ckpt['module.'+key].detach().data)
else:
ema_state[key] = deepcopy(ckpt[key].detach().data)
if self.configs.resume:
assert self.configs.resume.endswith(".pth") and os.path.isfile(self.configs.resume)
if self.rank == 0:
self.logger.info(f"=> Loaded checkpoint from {self.configs.resume}")
ckpt = torch.load(self.configs.resume, map_location=f"cuda:{self.rank}")
util_net.reload_model(self.model, ckpt['state_dict'])
torch.cuda.empty_cache()
# learning rate scheduler
self.iters_start = ckpt['iters_start']
for ii in range(1, self.iters_start+1):
self.adjust_lr(ii)
# logging
if self.rank == 0:
self.log_step = ckpt['log_step']
self.log_step_img = ckpt['log_step_img']
# EMA model
if self.rank == 0 and hasattr(self, 'ema_rate'):
ema_ckpt_path = self.ema_ckpt_dir / ("ema_"+Path(self.configs.resume).name)
self.logger.info(f"=> Loaded EMA checkpoint from {str(ema_ckpt_path)}")
ema_ckpt = torch.load(ema_ckpt_path, map_location=f"cuda:{self.rank}")
_load_ema_state(self.ema_state, ema_ckpt)
torch.cuda.empty_cache()
# AMP scaler
if self.amp_scaler is not None:
if "amp_scaler" in ckpt:
self.amp_scaler.load_state_dict(ckpt["amp_scaler"])
if self.rank == 0:
self.logger.info("Loading scaler from resumed state...")
# reset the seed
self.setup_seed(seed=self.iters_start)
else:
self.iters_start = 0
def setup_optimizaton(self):
self.optimizer = torch.optim.AdamW(self.model.parameters(),
lr=self.configs.train.lr,
weight_decay=self.configs.train.weight_decay)
# amp settings
self.amp_scaler = amp.GradScaler() if self.configs.train.use_amp else None
def build_model(self):
params = self.configs.model.get('params', dict)
model = util_common.get_obj_from_str(self.configs.model.target)(**params)
model.cuda()
if self.configs.model.ckpt_path is not None:
ckpt_path = self.configs.model.ckpt_path
if self.rank == 0:
self.logger.info(f"Initializing model from {ckpt_path}")
ckpt = torch.load(ckpt_path, map_location=f"cuda:{self.rank}")
if 'state_dict' in ckpt:
ckpt = ckpt['state_dict']
util_net.reload_model(model, ckpt)
if self.configs.train.compile.flag:
if self.rank == 0:
self.logger.info("Begin compiling model...")
model = torch.compile(model, mode=self.configs.train.compile.mode)
if self.rank == 0:
self.logger.info("Compiling Done")
if self.num_gpus > 1:
self.model = DDP(model, device_ids=[self.rank,], static_graph=False) # wrap the network
else:
self.model = model
# EMA
if self.rank == 0 and hasattr(self.configs.train, 'ema_rate'):
self.ema_model = deepcopy(model).cuda()
self.ema_state = OrderedDict(
{key:deepcopy(value.data) for key, value in self.model.state_dict().items()}
)
self.ema_ignore_keys = [x for x in self.ema_state.keys() if ('running_' in x or 'num_batches_tracked' in x)]
# model information
self.print_model_info()
def build_dataloader(self):
def _wrap_loader(loader):
while True: yield from loader
# make datasets
datasets = {'train': create_dataset(self.configs.data.get('train', dict)), }
if hasattr(self.configs.data, 'val') and self.rank == 0:
datasets['val'] = create_dataset(self.configs.data.get('val', dict))
if self.rank == 0:
for phase in datasets.keys():
length = len(datasets[phase])
self.logger.info('Number of images in {:s} data set: {:d}'.format(phase, length))
# make dataloaders
if self.num_gpus > 1:
sampler = udata.distributed.DistributedSampler(
datasets['train'],
num_replicas=self.num_gpus,
rank=self.rank,
)
else:
sampler = None
dataloaders = {'train': _wrap_loader(udata.DataLoader(
datasets['train'],
batch_size=self.configs.train.batch[0] // self.num_gpus,
shuffle=False if self.num_gpus > 1 else True,
drop_last=True,
num_workers=min(self.configs.train.num_workers, 4),
pin_memory=True,
prefetch_factor=self.configs.train.get('prefetch_factor', 2),
worker_init_fn=my_worker_init_fn,
sampler=sampler,
))}
if hasattr(self.configs.data, 'val') and self.rank == 0:
dataloaders['val'] = udata.DataLoader(datasets['val'],
batch_size=self.configs.train.batch[1],
shuffle=False,
drop_last=False,
num_workers=0,
pin_memory=True,
)
self.datasets = datasets
self.dataloaders = dataloaders
self.sampler = sampler
def print_model_info(self):
if self.rank == 0:
num_params = util_net.calculate_parameters(self.model) / 1000**2
# self.logger.info("Detailed network architecture:")
# self.logger.info(self.model.__repr__())
self.logger.info(f"Number of parameters: {num_params:.2f}M")
def prepare_data(self, data, dtype=torch.float32, phase='train'):
data = {key:value.cuda().to(dtype=dtype) for key, value in data.items()}
return data
def validation(self):
pass
def train(self):
self.init_logger() # setup logger: self.logger
self.build_model() # build model: self.model, self.loss
self.setup_optimizaton() # setup optimization: self.optimzer, self.sheduler
self.resume_from_ckpt() # resume if necessary
self.build_dataloader() # prepare data: self.dataloaders, self.datasets, self.sampler
self.model.train()
num_iters_epoch = math.ceil(len(self.datasets['train']) / self.configs.train.batch[0])
for ii in range(self.iters_start, self.configs.train.iterations):
self.current_iters = ii + 1
# prepare data
data = self.prepare_data(next(self.dataloaders['train']))
# training phase
self.training_step(data)
# validation phase
if 'val' in self.dataloaders and (ii+1) % self.configs.train.get('val_freq', 10000) == 0:
self.validation()
#update learning rate
self.adjust_lr()
# save checkpoint
if (ii+1) % self.configs.train.save_freq == 0:
self.save_ckpt()
if (ii+1) % num_iters_epoch == 0 and self.sampler is not None:
self.sampler.set_epoch(ii+1)
# close the tensorboard
self.close_logger()
def training_step(self, data):
pass
def adjust_lr(self, current_iters=None):
assert hasattr(self, 'lr_scheduler')
self.lr_scheduler.step()
def save_ckpt(self):
if self.rank == 0:
ckpt_path = self.ckpt_dir / 'model_{:d}.pth'.format(self.current_iters)
ckpt = {
'iters_start': self.current_iters,
'log_step': {phase:self.log_step[phase] for phase in ['train', 'val']},
'log_step_img': {phase:self.log_step_img[phase] for phase in ['train', 'val']},
'state_dict': self.model.state_dict(),
}
if self.amp_scaler is not None:
ckpt['amp_scaler'] = self.amp_scaler.state_dict()
torch.save(ckpt, ckpt_path)
if hasattr(self, 'ema_rate'):
ema_ckpt_path = self.ema_ckpt_dir / 'ema_model_{:d}.pth'.format(self.current_iters)
torch.save(self.ema_state, ema_ckpt_path)
def reload_ema_model(self):
if self.rank == 0:
if self.num_gpus > 1:
model_state = {key[7:]:value for key, value in self.ema_state.items()}
else:
model_state = self.ema_state
self.ema_model.load_state_dict(model_state)
@torch.no_grad()
def update_ema_model(self):
if self.num_gpus > 1:
dist.barrier()
if self.rank == 0:
source_state = self.model.state_dict()
rate = self.ema_rate
for key, value in self.ema_state.items():
if key in self.ema_ignore_keys:
self.ema_state[key] = source_state[key]
else:
self.ema_state[key].mul_(rate).add_(source_state[key].detach().data, alpha=1-rate)
def logging_image(self, im_tensor, tag, phase, add_global_step=False, nrow=8):
"""
Args:
im_tensor: b x c x h x w tensor
im_tag: str
phase: 'train' or 'val'
nrow: number of displays in each row
"""
assert self.tf_logging or self.local_logging
im_tensor = vutils.make_grid(im_tensor, nrow=nrow, normalize=True, scale_each=True) # c x H x W
if self.local_logging:
im_path = str(self.image_dir / phase / f"{tag}-{self.log_step_img[phase]}.png")
im_np = im_tensor.cpu().permute(1,2,0).numpy()
util_image.imwrite(im_np, im_path)
if self.tf_logging:
self.writer.add_image(
f"{phase}-{tag}-{self.log_step_img[phase]}",
im_tensor,
self.log_step_img[phase],
)
if add_global_step:
self.log_step_img[phase] += 1
def logging_metric(self, metrics, tag, phase, add_global_step=False):
"""
Args:
metrics: dict
tag: str
phase: 'train' or 'val'
"""
if self.tf_logging:
tag = f"{phase}-{tag}"
if isinstance(metrics, dict):
self.writer.add_scalars(tag, metrics, self.log_step[phase])
else:
self.writer.add_scalar(tag, metrics, self.log_step[phase])
if add_global_step:
self.log_step[phase] += 1
else:
pass
def freeze_model(self, net):
for params in net.parameters():
params.requires_grad = False
def load_model(self, model, ckpt_path=None, tag='model', strict=True):
if self.rank == 0:
self.logger.info(f'Loading {tag} from {ckpt_path}...')
ckpt = torch.load(ckpt_path, map_location=f"cuda:{self.rank}")
if 'state_dict' in ckpt:
ckpt = ckpt['state_dict']
if strict:
util_net.reload_model(model, ckpt)
else:
model.load_state_dict(ckpt, strict=False)
if self.rank == 0:
self.logger.info('Loaded Done')
class TrainerDifIR(TrainerBase):
def setup_optimizaton(self):
super().setup_optimizaton()
if self.configs.train.lr_schedule == 'cosin':
self.lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer=self.optimizer,
T_max=self.configs.train.iterations - self.configs.train.warmup_iterations,
eta_min=self.configs.train.lr_min,
)
def build_model(self):
super().build_model()
if self.rank == 0 and hasattr(self.configs.train, 'ema_rate'):
self.ema_ignore_keys.extend([x for x in self.ema_state.keys() if 'relative_position_index' in x])
# autoencoder
if self.configs.autoencoder is not None:
ckpt = torch.load(self.configs.autoencoder.ckpt_path, map_location=f"cuda:{self.rank}")
if self.rank == 0:
self.logger.info(f"Restoring autoencoder from {self.configs.autoencoder.ckpt_path}")
params = self.configs.autoencoder.get('params', dict)
autoencoder = util_common.get_obj_from_str(self.configs.autoencoder.target)(**params)
autoencoder.cuda()
if self.configs.autoencoder.tune_decoder:
self.load_model(autoencoder, self.configs.autoencoder.ckpt_path, tag='autoencoder', strict=True)
if self.rank == 0:
num_params = 0
for key, value in autoencoder.named_parameters():
if 'decoder' in key or 'post_quant_conv' in key:
num_params += value.numel()
else:
value.requires_grad = False
self.logger.info(f'Finetuning Decoder module: {num_params/10**6:.2f}M...')
else:
self.load_model(autoencoder, self.configs.autoencoder.ckpt_path, tag='autoencoder', strict=True)
self.freeze_model(autoencoder)
autoencoder.eval()
if self.configs.train.compile.flag:
if self.rank == 0:
self.logger.info("Begin compiling autoencoder model...")
autoencoder = torch.compile(autoencoder, mode=self.configs.train.compile.mode)
if self.rank == 0:
self.logger.info("Compiling Done")
self.autoencoder = autoencoder
else:
self.autoencoder = None
if self.configs.autoencoder.params.lora_tune_decoder or self.configs.autoencoder.tune_decoder:
self.freeze_model(self.model)
# LPIPS metric
if hasattr(self.configs, 'lpips'):
lpips_net = self.configs.lpips.net
else:
lpips_net = 'vgg'
if self.rank == 0:
self.logger.info(f"Loading LIIPS Metric: {lpips_net}...")
lpips_loss = lpips.LPIPS(net=lpips_net).to(f"cuda:{self.rank}")
for params in lpips_loss.parameters():
params.requires_grad_(False)
lpips_loss.eval()
if self.configs.train.compile.flag:
if self.rank == 0:
self.logger.info("Begin compiling LPIPS Metric...")
lpips_loss = torch.compile(lpips_loss, mode=self.configs.train.compile.mode)
if self.rank == 0:
self.logger.info("Compiling Done")
self.lpips_loss = lpips_loss
params = self.configs.diffusion.get('params', dict)
self.base_diffusion = util_common.get_obj_from_str(self.configs.diffusion.target)(**params)
@torch.no_grad()
def _dequeue_and_enqueue(self):
"""It is the training pair pool for increasing the diversity in a batch.
Batch processing limits the diversity of synthetic degradations in a batch. For example, samples in a
batch could not have different resize scaling factors. Therefore, we employ this training pair pool
to increase the degradation diversity in a batch.
"""
# initialize
b, c, h, w = self.lq.size()
if not hasattr(self, 'queue_size'):
self.queue_size = self.configs.degradation.get('queue_size', b*10)
if not hasattr(self, 'queue_lr'):
assert self.queue_size % b == 0, f'queue size {self.queue_size} should be divisible by batch size {b}'
self.queue_lr = torch.zeros(self.queue_size, c, h, w).cuda()
_, c, h, w = self.gt.size()
self.queue_gt = torch.zeros(self.queue_size, c, h, w).cuda()
self.queue_ptr = 0
if self.queue_ptr == self.queue_size: # the pool is full
# do dequeue and enqueue
# shuffle
idx = torch.randperm(self.queue_size)
self.queue_lr = self.queue_lr[idx]
self.queue_gt = self.queue_gt[idx]
# get first b samples
lq_dequeue = self.queue_lr[0:b, :, :, :].clone()
gt_dequeue = self.queue_gt[0:b, :, :, :].clone()
# update the queue
self.queue_lr[0:b, :, :, :] = self.lq.clone()
self.queue_gt[0:b, :, :, :] = self.gt.clone()
self.lq = lq_dequeue
self.gt = gt_dequeue
else:
# only do enqueue
self.queue_lr[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.lq.clone()
self.queue_gt[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.gt.clone()
self.queue_ptr = self.queue_ptr + b
@torch.no_grad()
def prepare_data(self, data, dtype=torch.float32, realesrgan=None, phase='train'):
if realesrgan is None:
realesrgan = self.configs.data.get(phase, dict).type == 'realesrgan'
if realesrgan and phase == 'train':
if not hasattr(self, 'jpeger'):
self.jpeger = DiffJPEG(differentiable=False).cuda() # simulate JPEG compression artifacts
if not hasattr(self, 'use_sharpener'):
self.use_sharpener = USMSharp().cuda()
im_gt = data['gt'].cuda()
kernel1 = data['kernel1'].cuda()
kernel2 = data['kernel2'].cuda()
sinc_kernel = data['sinc_kernel'].cuda()
ori_h, ori_w = im_gt.size()[2:4]
if isinstance(self.configs.degradation.sf, int):
sf = self.configs.degradation.sf
else:
assert len(self.configs.degradation.sf) == 2
sf = random.uniform(*self.configs.degradation.sf)
if self.configs.degradation.use_sharp:
im_gt = self.use_sharpener(im_gt)
# ----------------------- The first degradation process ----------------------- #
# blur
out = filter2D(im_gt, kernel1)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
self.configs.degradation['resize_prob'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, self.configs.degradation['resize_range'][1])
elif updown_type == 'down':
scale = random.uniform(self.configs.degradation['resize_range'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, scale_factor=scale, mode=mode)
# add noise
gray_noise_prob = self.configs.degradation['gray_noise_prob']
if random.random() < self.configs.degradation['gaussian_noise_prob']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=self.configs.degradation['noise_range'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.configs.degradation['poisson_scale_range'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.configs.degradation['jpeg_range'])
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
out = self.jpeger(out, quality=jpeg_p)
# ----------------------- The second degradation process ----------------------- #
if random.random() < self.configs.degradation['second_order_prob']:
# blur
if random.random() < self.configs.degradation['second_blur_prob']:
out = filter2D(out, kernel2)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
self.configs.degradation['resize_prob2'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, self.configs.degradation['resize_range2'][1])
elif updown_type == 'down':
scale = random.uniform(self.configs.degradation['resize_range2'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(int(ori_h / sf * scale), int(ori_w / sf * scale)),
mode=mode,
)
# add noise
gray_noise_prob = self.configs.degradation['gray_noise_prob2']
if random.random() < self.configs.degradation['gaussian_noise_prob2']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=self.configs.degradation['noise_range2'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.configs.degradation['poisson_scale_range2'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False,
)
# JPEG compression + the final sinc filter
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
# as one operation.
# We consider two orders:
# 1. [resize back + sinc filter] + JPEG compression
# 2. JPEG compression + [resize back + sinc filter]
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
if random.random() < 0.5:
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // sf, ori_w // sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.configs.degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
else:
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.configs.degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // sf, ori_w // sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# resize back
if self.configs.degradation.resize_back:
out = F.interpolate(out, size=(ori_h, ori_w), mode='bicubic')
temp_sf = self.configs.degradation['sf']
else:
temp_sf = self.configs.degradation['sf']
# clamp and round
im_lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
# random crop
gt_size = self.configs.degradation['gt_size']
im_gt, im_lq = paired_random_crop(im_gt, im_lq, gt_size, temp_sf)
im_lq = (im_lq - 0.5) / 0.5 # [0, 1] to [-1, 1]
im_gt = (im_gt - 0.5) / 0.5 # [0, 1] to [-1, 1]
self.lq, self.gt, flag_nan = replace_nan_in_batch(im_lq, im_gt)
if flag_nan:
with open(f"records_nan_rank{self.rank}.log", 'a') as f:
f.write(f'Find Nan value in rank{self.rank}\n')
# training pair pool
self._dequeue_and_enqueue()
self.lq = self.lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract
return {'lq':self.lq, 'gt':self.gt}
elif phase == 'val':
offset = self.configs.train.get('val_resolution', 256)
for key, value in data.items():
h, w = value.shape[2:]
if h > offset and w > offset:
h_end = int((h // offset) * offset)
w_end = int((w // offset) * offset)
data[key] = value[:, :, :h_end, :w_end]
else:
h_pad = math.ceil(h / offset) * offset - h
w_pad = math.ceil(w / offset) * offset - w
padding_mode = self.configs.train.get('val_padding_mode', 'reflect')
data[key] = F.pad(value, pad=(0, w_pad, 0, h_pad), mode=padding_mode)
return {key:value.cuda().to(dtype=dtype) for key, value in data.items()}
else:
return {key:value.cuda().to(dtype=dtype) for key, value in data.items()}
def backward_step(self, dif_loss_wrapper, micro_data, num_grad_accumulate, tt):
context = torch.cuda.amp.autocast if self.configs.train.use_amp else nullcontext
with context():
losses, z_t, z0_pred = dif_loss_wrapper()
losses['loss'] = losses['mse']
loss = losses['loss'].mean() / num_grad_accumulate
if self.amp_scaler is None:
loss.backward()
else:
self.amp_scaler.scale(loss).backward()
return losses, z0_pred, z_t
def training_step(self, data):
current_batchsize = data['gt'].shape[0]
micro_batchsize = self.configs.train.microbatch
num_grad_accumulate = math.ceil(current_batchsize / micro_batchsize)
for jj in range(0, current_batchsize, micro_batchsize):
micro_data = {key:value[jj:jj+micro_batchsize,] for key, value in data.items()}
last_batch = (jj+micro_batchsize >= current_batchsize)
tt = torch.randint(
0, self.base_diffusion.num_timesteps,
size=(micro_data['gt'].shape[0],),
device=f"cuda:{self.rank}",
)
latent_downsamping_sf = 2**(len(self.configs.autoencoder.params.ddconfig.ch_mult) - 1)
latent_resolution = micro_data['gt'].shape[-1] // latent_downsamping_sf
if 'autoencoder' in self.configs:
noise_chn = self.configs.autoencoder.params.embed_dim
else:
noise_chn = micro_data['gt'].shape[1]
noise = torch.randn(
size= (micro_data['gt'].shape[0], noise_chn,) + (latent_resolution, ) * 2,
device=micro_data['gt'].device,
)
if self.configs.model.params.cond_lq:
model_kwargs = {'lq':micro_data['lq'],}
if 'mask' in micro_data:
model_kwargs['mask'] = micro_data['mask']
else:
model_kwargs = None
compute_losses = functools.partial(
self.base_diffusion.training_losses,
self.model,
micro_data['gt'],
micro_data['lq'],
tt,
first_stage_model=self.autoencoder,
model_kwargs=model_kwargs,
noise=noise,
)
if last_batch or self.num_gpus <= 1:
losses, z0_pred, z_t = self.backward_step(compute_losses, micro_data, num_grad_accumulate, tt)
else:
with self.model.no_sync():
losses, z0_pred, z_t = self.backward_step(compute_losses, micro_data, num_grad_accumulate, tt)
# make logging
if last_batch:
self.log_step_train(losses, tt, micro_data, z_t, z0_pred.detach())
if self.configs.train.use_amp:
self.amp_scaler.step(self.optimizer)
self.amp_scaler.update()
else:
self.optimizer.step()
# grad zero
self.model.zero_grad()
if hasattr(self.configs.train, 'ema_rate'):
self.update_ema_model()
def adjust_lr(self, current_iters=None):
base_lr = self.configs.train.lr
warmup_steps = self.configs.train.warmup_iterations
current_iters = self.current_iters if current_iters is None else current_iters
if current_iters <= warmup_steps:
for params_group in self.optimizer.param_groups:
params_group['lr'] = (current_iters / warmup_steps) * base_lr
else:
if hasattr(self, 'lr_scheduler'):
self.lr_scheduler.step()
def log_step_train(self, loss, tt, batch, z_t, z0_pred, phase='train'):
'''
param loss: a dict recording the loss informations
param tt: 1-D tensor, time steps
'''
if self.rank == 0:
chn = batch['gt'].shape[1]
num_timesteps = self.base_diffusion.num_timesteps
record_steps = [1, (num_timesteps // 2) + 1, num_timesteps]
if self.current_iters % self.configs.train.log_freq[0] == 1:
self.loss_mean = {key:torch.zeros(size=(len(record_steps),), dtype=torch.float64)
for key in loss.keys()}
self.loss_count = torch.zeros(size=(len(record_steps),), dtype=torch.float64)
for jj in range(len(record_steps)):
for key, value in loss.items():
index = record_steps[jj] - 1
mask = torch.where(tt == index, torch.ones_like(tt), torch.zeros_like(tt))
current_loss = torch.sum(value.detach() * mask)
self.loss_mean[key][jj] += current_loss.item()
self.loss_count[jj] += mask.sum().item()
if self.current_iters % self.configs.train.log_freq[0] == 0:
if torch.any(self.loss_count == 0):
self.loss_count += 1e-4
for key in loss.keys():
self.loss_mean[key] /= self.loss_count
log_str = 'Train: {:06d}/{:06d}, Loss/MSE: '.format(
self.current_iters,
self.configs.train.iterations)
for jj, current_record in enumerate(record_steps):
log_str += 't({:d}):{:.1e}/{:.1e}, '.format(
current_record,
self.loss_mean['loss'][jj].item(),
self.loss_mean['mse'][jj].item(),
)
log_str += 'lr:{:.2e}'.format(self.optimizer.param_groups[0]['lr'])
self.logger.info(log_str)
self.logging_metric(self.loss_mean, tag='Loss', phase=phase, add_global_step=True)
if self.current_iters % self.configs.train.log_freq[1] == 0:
self.logging_image(batch['lq'], tag='lq', phase=phase, add_global_step=False)
self.logging_image(batch['gt'], tag='gt', phase=phase, add_global_step=False)
x_t = self.base_diffusion.decode_first_stage(
self.base_diffusion._scale_input(z_t, tt),
self.autoencoder,
)
self.logging_image(x_t, tag='diffused', phase=phase, add_global_step=False)
x0_pred = self.base_diffusion.decode_first_stage(
z0_pred,
self.autoencoder,
)
self.logging_image(x0_pred, tag='x0-pred', phase=phase, add_global_step=True)
if self.current_iters % self.configs.train.save_freq == 1:
self.tic = time.time()
if self.current_iters % self.configs.train.save_freq == 0:
self.toc = time.time()
elaplsed = (self.toc - self.tic)
self.logger.info(f"Elapsed time: {elaplsed:.2f}s")
self.logger.info("="*100)
def validation(self, phase='val'):
if self.rank == 0:
if self.configs.train.use_ema_val:
self.reload_ema_model()
self.ema_model.eval()
else:
self.model.eval()
indices = np.linspace(
0,
self.base_diffusion.num_timesteps,
self.base_diffusion.num_timesteps if self.base_diffusion.num_timesteps < 5 else 4,
endpoint=False,
dtype=np.int64,
).tolist()
if not (self.base_diffusion.num_timesteps-1) in indices:
indices.append(self.base_diffusion.num_timesteps-1)
batch_size = self.configs.train.batch[1]
num_iters_epoch = math.ceil(len(self.datasets[phase]) / batch_size)
mean_psnr = mean_lpips = 0
for ii, data in enumerate(self.dataloaders[phase]):
data = self.prepare_data(data, phase='val')
if 'gt' in data:
im_lq, im_gt = data['lq'], data['gt']
else:
im_lq = data['lq']
num_iters = 0
if self.configs.model.params.cond_lq:
model_kwargs = {'lq':data['lq'],}
if 'mask' in data:
model_kwargs['mask'] = data['mask']
else:
model_kwargs = None
tt = torch.tensor(
[self.base_diffusion.num_timesteps, ]*im_lq.shape[0],
dtype=torch.int64,
).cuda()
for sample in self.base_diffusion.p_sample_loop_progressive(
y=im_lq,
model=self.ema_model if self.configs.train.use_ema_val else self.model,
first_stage_model=self.autoencoder,
noise=None,
clip_denoised=True if self.autoencoder is None else False,
model_kwargs=model_kwargs,
device=f"cuda:{self.rank}",
progress=False,
):
sample_decode = {}
if num_iters in indices:
for key, value in sample.items():
if key in ['sample', ]:
sample_decode[key] = self.base_diffusion.decode_first_stage(
value,
self.autoencoder,
).clamp(-1.0, 1.0)
im_sr_progress = sample_decode['sample']
if num_iters + 1 == 1:
im_sr_all = im_sr_progress
else:
im_sr_all = torch.cat((im_sr_all, im_sr_progress), dim=1)
num_iters += 1
tt -= 1
if 'gt' in data:
mean_psnr += util_image.batch_PSNR(
sample_decode['sample'] * 0.5 + 0.5,
im_gt * 0.5 + 0.5,
ycbcr=self.configs.train.val_y_channel,
)
mean_lpips += self.lpips_loss(
sample_decode['sample'],
im_gt,
).sum().item()
if (ii + 1) % self.configs.train.log_freq[2] == 0:
self.logger.info(f'Validation: {ii+1:02d}/{num_iters_epoch:02d}...')
im_sr_all = rearrange(im_sr_all, 'b (k c) h w -> (b k) c h w', c=im_lq.shape[1])
self.logging_image(
im_sr_all,
tag='progress',
phase=phase,
add_global_step=False,
nrow=len(indices),
)
if 'gt' in data:
self.logging_image(im_gt, tag='gt', phase=phase, add_global_step=False)
self.logging_image(im_lq, tag='lq', phase=phase, add_global_step=True)
if 'gt' in data:
mean_psnr /= len(self.datasets[phase])
mean_lpips /= len(self.datasets[phase])
self.logger.info(f'Validation Metric: PSNR={mean_psnr:5.2f}, LPIPS={mean_lpips:6.4f}...')
self.logging_metric(mean_psnr, tag='PSNR', phase=phase, add_global_step=False)
self.logging_metric(mean_lpips, tag='LPIPS', phase=phase, add_global_step=True)
self.logger.info("="*100)
if not (self.configs.train.use_ema_val and hasattr(self.configs.train, 'ema_rate')):
self.model.train()
class TrainerDifIRLPIPS(TrainerDifIR):
def backward_step(self, dif_loss_wrapper, micro_data, num_grad_accumulate, tt):
loss_coef = self.configs.train.get('loss_coef')
context = torch.cuda.amp.autocast if self.configs.train.use_amp else nullcontext
# diffusion loss
with context():
losses, z_t, z0_pred = dif_loss_wrapper()
x0_pred = self.base_diffusion.decode_first_stage(
z0_pred,
self.autoencoder,
) # f16
self.current_x0_pred = x0_pred.detach()
# lpips loss
losses["lpips"] = self.lpips_loss(
x0_pred,
micro_data['gt'],
).to(z0_pred.dtype).view(-1)
flag_nan = torch.any(torch.isnan(losses["lpips"]))
if flag_nan:
losses["lpips"] = torch.nan_to_num(losses["lpips"], nan=0.0)
losses["lpips"] *= loss_coef[1]
if loss_coef[0] > 0: # calculate mse in latent space
losses["mse"] *= loss_coef[0]
else: # calculate mse in pixel space
assert loss_coef[2] > 0