-
Notifications
You must be signed in to change notification settings - Fork 32
/
mobilenet_yolo_coco.cfg
337 lines (307 loc) · 3.69 KB
/
mobilenet_yolo_coco.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
[net]
# Testing
#batch=1
#subdivisions=1
# Training
batch=1 #64
subdivisions=1 #8
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.00005
burn_in=1000
max_batches = 500200
policy=steps
steps=15000,17000
scales=.1,.1
[convolutional]
batch_normalize=1
filters=32
size=3
stride=2
pad=1
activation=leaky
#1th 3x3
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
group=32
activation=leaky
#1th 1x1
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=0
activation=leaky
#2th 3x3
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
group=64
activation=leaky
#2th 1x1
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=0
activation=leaky
#3th 3x3
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
group=128
activation=leaky
#3th 1x1
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=0
activation=leaky
#4th 3x3
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
group=128
activation=leaky
#4th 1x1
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=0
activation=leaky
#5th 3x3
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
group=256
activation=leaky
#5th 1x1
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=0
activation=leaky
#6th 3x3
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
group=256
activation=leaky
#6th 1x1
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=0
activation=leaky
#7th 3x3
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
group=512
activation=leaky
#7th 1x1
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=0
activation=leaky
#8th 3x3
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
group=512
activation=leaky
#8th 1x1
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=0
activation=leaky
#9th 3x3
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
group=512
activation=leaky
#9th 1x1
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=0
activation=leaky
#10th 3x3
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
group=512
activation=leaky
#10th 1x1
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=0
activation=leaky
#11th 3x3
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
group=512
activation=leaky
#11th 1x1
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=0
activation=leaky
#12th 3x3
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
group=512
activation=leaky
#12th 1x1
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=0
activation=leaky
#13th 3x3
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
group=1024
activation=leaky
#13th 1x1
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=0
activation=leaky
#######
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[route]
layers=-14
[convolutional]
batch_normalize=1
size=1
stride=1
pad=1
filters=64
activation=leaky
[reorg]
stride=2
[route]
layers=-1,-4
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=425
activation=linear
[region]
anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
bias_match=1
classes=80
coords=4
num=5
softmax=1
jitter=.3
rescore=1
object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1
absolute=1
thresh = .6
random=1