Skip to content

[RSE 2021] Crop mapping from image time series: deep learning with multi-scale label hierarchies

Notifications You must be signed in to change notification settings

0zgur0/multi-stage-convSTAR-network

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ms-convSTAR

Pytorch implementation for hierarchical time series classification with multi-stage convolutional RNN described in:

Crop mapping from image time series: deep learning with multi-scale label hierarchies. Turkoglu, Mehmet Ozgur and D'Aronco, Stefano and Perich, Gregor and Liebisch, Frank and Streit, Constantin and Schindler, Konrad and Wegner, Jan Dirk. Remote Sensing of Environment, 2021.

If you find our work useful in your research, please consider citing our paper:

@article{turkoglu2021msconvstar,
  title={Crop mapping from image time series: deep learning with multi-scale label hierarchies},
  author={Turkoglu, Mehmet Ozgur and D'Aronco, Stefano and Perich, Gregor and Liebisch, Frank and Streit, Constantin and Schindler, Konrad and Wegner, Jan Dirk},
  journal={Remote Sensing of Environment},
  volume={264},
  year={2021},
  publisher={Elsevier}
}

ZueriCrop Dataset

Download the dataset via https://polybox.ethz.ch/index.php/s/uXfdr2AcXE3QNB6

Getting Started

Train the model e.g., for fold:1 with

python3 train.py --data /path/to/data --fold 1

Test the trained model e.g., for fold:1 with

python3 test.py --data /path/to/data --fold 1 --snapshot /path/to/trained_model

Releases

No releases published

Packages

No packages published

Languages