generated from AC-BO-Hackathon/project-template
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d956ec1
commit e8df4d0
Showing
3 changed files
with
199 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
import numpy as np | ||
import os | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
path_results = '../results' | ||
path_figures = '../figures' | ||
|
||
num_layerss = [2, 4, 6, 8] | ||
seeds = np.arange(42, 421, 42) | ||
num_init = 10 | ||
num_iter = 500 | ||
|
||
|
||
def plot(means, sems, num_layers, str_objective, show_figure, save_figure): | ||
cm = plt.get_cmap('tab10') | ||
|
||
if str_objective == 'trans': | ||
str_label = r'\textrm{Transmittance}' | ||
str_ylabel = r'\textrm{Maximum transmittance}' | ||
color = cm(0) | ||
elif str_objective == 'effec': | ||
str_label = r'\textrm{Shielding effectiveness}' | ||
str_ylabel = r'\textrm{Maximum shielding effectiveness (dB)}' | ||
color = cm(1) | ||
else: | ||
raise ValueError | ||
|
||
plt.rc('text', usetex=True) | ||
|
||
fig = plt.figure(figsize=(8, 6)) | ||
ax = fig.gca() | ||
|
||
bx = np.arange(0, means.shape[0]) | ||
|
||
ax.plot(bx, means, label=str_label, linewidth=4, linestyle='solid', color=color) | ||
ax.fill_between(bx, means - sems, means + sems, alpha=0.3, color=color) | ||
|
||
ax.set_xlabel(r'\textrm{Iteration}', fontsize=24) | ||
ax.set_ylabel(str_ylabel, fontsize=24) | ||
|
||
ax.set_xlim([0, np.max(bx)]) | ||
plt.tick_params(axis='both', which='major', labelsize=20) | ||
|
||
plt.grid() | ||
plt.tight_layout() | ||
|
||
if save_figure: | ||
plt.savefig(os.path.join(path_figures, f'maxima_layers_{num_layers}_{str_objective}.pdf'), | ||
format='pdf', transparent=True, bbox_inches='tight') | ||
plt.savefig(os.path.join(path_figures, f'maxima_layers_{num_layers}_{str_objective}.png'), | ||
format='png', transparent=True, bbox_inches='tight') | ||
|
||
if show_figure: | ||
plt.show() | ||
|
||
plt.close('all') | ||
|
||
def get_maxima(values, num_init): | ||
new_values = [] | ||
|
||
for value in values: | ||
new_value = [np.max(value[:num_init])] | ||
|
||
for val in value[num_init:]: | ||
if new_value[-1] < val: | ||
new_value.append(val) | ||
else: | ||
new_value.append(new_value[-1]) | ||
new_values.append(new_value) | ||
return np.array(new_values) | ||
|
||
def get_means_sems(values): | ||
means = np.mean(values, axis=0) | ||
sems = np.std(values, axis=0, ddof=1) / np.sqrt(values.shape[0]) | ||
return means, sems | ||
|
||
|
||
if __name__ == '__main__': | ||
show_figure = True | ||
save_figure = True | ||
|
||
for num_layers in num_layerss: | ||
transparencies_all = [] | ||
shielding_effectivenesses_all = [] | ||
|
||
for seed in seeds: | ||
str_file = f'mobo_layers_{num_layers}_init_{num_init}_iter_{num_iter}_seed_{seed:04d}.npy' | ||
|
||
results = np.load(os.path.join(path_results, str_file), allow_pickle=True) | ||
results = results[()] | ||
|
||
negative_transparencies = results['negative_transparencies'] | ||
negative_shielding_effectivenesses = results['negative_shielding_effectivenesses'] | ||
|
||
transparencies = -1.0 * negative_transparencies | ||
shielding_effectivenesses = -1.0 * negative_shielding_effectivenesses | ||
|
||
print(transparencies.shape) | ||
print(shielding_effectivenesses.shape) | ||
|
||
transparencies_all.append(transparencies) | ||
shielding_effectivenesses_all.append(shielding_effectivenesses) | ||
|
||
trans = get_maxima(transparencies_all, num_init) | ||
effec = get_maxima(shielding_effectivenesses_all, num_init) | ||
|
||
means_trans, sems_trans = get_means_sems(trans) | ||
means_effec, sems_effec = get_means_sems(effec) | ||
|
||
plot(means_trans, sems_trans, num_layers, 'trans', show_figure, save_figure) | ||
plot(means_effec, sems_effec, num_layers, 'effec', show_figure, save_figure) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
import numpy as np | ||
import os | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
path_results = '../results' | ||
path_figures = '../figures' | ||
|
||
num_layerss = [2, 4, 6, 8] | ||
seeds = np.arange(42, 421, 42) | ||
num_init = 10 | ||
num_iter = 500 | ||
|
||
|
||
def is_pareto_frontier(objs): | ||
assert isinstance(objs, np.ndarray) | ||
assert len(objs.shape) == 2 | ||
assert objs.shape[1] == 2 | ||
|
||
is_pareto = np.ones(objs.shape[0], dtype=bool) | ||
|
||
for i, c in enumerate(objs): | ||
if is_pareto[i]: | ||
is_pareto[is_pareto] = np.any(objs[is_pareto] > c, axis=1) | ||
is_pareto[i] = True | ||
return is_pareto | ||
|
||
def plot(Y, num_layers): | ||
plt.rc('text', usetex=True) | ||
|
||
fig = plt.figure(figsize=(8, 6)) | ||
ax = fig.gca() | ||
cm = plt.get_cmap('tab10') | ||
|
||
pareto_frontier = Y[is_pareto_frontier(Y)] | ||
indices = np.argsort(pareto_frontier[:, 0]) | ||
pareto_frontier = pareto_frontier[indices] | ||
|
||
ax.plot(Y[:, 0], Y[:, 1], linestyle='none', color=cm(2), marker='.', markersize=14) | ||
ax.plot(pareto_frontier[:, 0], pareto_frontier[:, 1], linestyle='solid', linewidth=4, color=cm(3)) | ||
|
||
ax.set_xlabel(r'\textrm{Transmittance}', fontsize=24) | ||
ax.set_ylabel(r'\textrm{Shielding Effectiveness (dB)}', fontsize=24) | ||
|
||
plt.tick_params(axis='both', which='major', labelsize=20) | ||
|
||
plt.grid() | ||
plt.tight_layout() | ||
|
||
if save_figure: | ||
plt.savefig(os.path.join(path_figures, f'pareto_layers_{num_layers}.pdf'), format='pdf', transparent=True, bbox_inches='tight') | ||
plt.savefig(os.path.join(path_figures, f'pareto_layers_{num_layers}.png'), format='png', transparent=True, bbox_inches='tight') | ||
|
||
if show_figure: | ||
plt.show() | ||
|
||
plt.close('all') | ||
|
||
|
||
if __name__ == '__main__': | ||
show_figure = True | ||
save_figure = False | ||
|
||
for num_layers in num_layerss: | ||
transparencies_all = [] | ||
shielding_effectivenesses_all = [] | ||
|
||
for seed in seeds: | ||
str_file = f'mobo_layers_{num_layers}_init_{num_init}_iter_{num_iter}_seed_{seed:04d}.npy' | ||
|
||
results = np.load(os.path.join(path_results, str_file), allow_pickle=True) | ||
results = results[()] | ||
|
||
negative_transparencies = results['negative_transparencies'] | ||
negative_shielding_effectivenesses = results['negative_shielding_effectivenesses'] | ||
|
||
transparencies = -1.0 * negative_transparencies | ||
shielding_effectivenesses = -1.0 * negative_shielding_effectivenesses | ||
|
||
transparencies_all += list(transparencies) | ||
shielding_effectivenesses_all += list(shielding_effectivenesses) | ||
|
||
Y = np.array([transparencies_all, shielding_effectivenesses_all]).T | ||
print(Y.shape) | ||
|
||
plot(Y, num_layers) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters