Skip to content

Commit

Permalink
Update model_builders.py
Browse files Browse the repository at this point in the history
  • Loading branch information
SoaresLMB authored Aug 14, 2024
1 parent 300c025 commit eb5ce3b
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions builders/model_builders.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,7 @@ def objective(trial,input_shape,X_train,y_train,X_val,y_val,neural_network_type,
num_layers = trial.suggest_int('num_layers', 2, 4)
num_dense_layers = trial.suggest_int('num_dense_layers', 1, 3)
dense_neurons = trial.suggest_int('dense_neurons', 60, 320, log=True)
dropout = trial.suggest_float('dropout', 0.5, 0.9, step=0.1)
dropout = trial.suggest_float('dropout', 0.1, 0.5, step=0.1)
learning_rate = trial.suggest_categorical('learning_rate', [0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01])
decision_threshold = trial.suggest_float('decision_threshold', 0.5, 0.9,step=0.1)

Expand All @@ -266,7 +266,7 @@ def objective(trial,input_shape,X_train,y_train,X_val,y_val,neural_network_type,

num_layers = trial.suggest_int('num_layers', 1, 5)
dense_neurons = trial.suggest_int('dense_neurons', 20, 4000, log=True)
dropout = trial.suggest_float('dropout', 0.5, 0.9, step=0.1)
dropout = trial.suggest_float('dropout', 0.1, 0.5, step=0.1)
learning_rate = trial.suggest_categorical('learning_rate', [0.001, 0.003, 0.005, 0.007, 0.01, 0.03, 0.05, 0.07])
decision_threshold = trial.suggest_float('decision_threshold', 0.5, 0.9,step=0.1)

Expand Down Expand Up @@ -305,7 +305,7 @@ def objective(trial,input_shape,X_train,y_train,X_val,y_val,neural_network_type,
def create_study_object(objective, input_shape, X_train, y_train, X_val, y_val, neural_network_type,neural_network_results_dir,number_of_labels):
study = optuna.create_study(direction="maximize")

study.optimize(lambda trial: objective(trial, input_shape, X_train, y_train, X_val, y_val, neural_network_type,neural_network_results_dir,number_of_labels), n_trials=100)
study.optimize(lambda trial: objective(trial, input_shape, X_train, y_train, X_val, y_val, neural_network_type,neural_network_results_dir,number_of_labels), n_trials=20)

best_trial = study.best_trial
best_params = best_trial.params
Expand Down

0 comments on commit eb5ce3b

Please sign in to comment.