Skip to content

Hierarchical Scene Coordinate Classification and Regression for Visual Localization

License

Notifications You must be signed in to change notification settings

AaltoVision/hscnet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hierarchical Scene Coordinate Classification and Regression for Visual Localization

This is the PyTorch implementation of our paper, a hierarchical scene coordinate prediction approach for one-shot RGB camera relocalization:

Hierarchical Scene Coordinate Classification and Regression for Visual Localization, CVPR 2020
Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, Juho Kannala

Setup

Python3 and the following packages are required:

cython
numpy
pytorch
opencv
tqdm
imgaug

It is recommended to use a conda environment:

  1. Install anaconda or miniconda.
  2. Create the environment: conda env create -f environment.yml.
  3. Activate the environment: conda activate hscnet.

To run the evaluation script, you will need to build the cython module:

cd ./pnpransac
python setup.py build_ext --inplace

Data

We currently support 7-Scenes, 12-Scenes, Cambridge Landmarks, and the three combined scenes which have been used in the paper. We will upload the code for the Aachen Day-Night dataset experiments.

You will need to download the datasets from the websites, and we provide a data package which contains other necessary files for reproducing our results. Note that for the Cambridge Landmarks dataset, you will also need to rename the files according to the train/test.txt files and put them in the train/test folders. And the depth maps we used for this dataset are from DSAC++. The provided label maps are obtained by running k-means hierarchically on the 3D points.

Evaluation

The trained models for the main experiments in the paper can be downloaded here.

To evaluate on a scene from a dataset:

python eval.py \
        --model [hscnet|scrnet] \
        --dataset [7S|12S|Cambridge|i7S|i12S|i19S] \
        --scene scene_name \
        --checkpoint /path/to/saved/model/ \
        --data_path /path/to/data/

Training

You can train the hierarchical scene coordinate network or the baseline regression network by running the following command:

python train.py \
        --model [hscnet|scrnet] \
        --dataset [7S|12S|Cambridge|i7S|i12S|i19S] \
        --scene scene_name \ # not required for the combined scenes
        --n_iter number_of_training_iterations \
        --data_path /path/to/data/

License

Copyright (c) 2020 AaltoVision.
This code is released under the MIT License.

Acknowledgements

The PnP-RANSAC pose solver builds on DSAC++. The sensor calibration file and the normalization translation files for the 7-Scenes dataset are from DSAC. The rendered depth images for the Cambridge Landmarks dataset are from DSAC++.

Citation

Please consider citing our paper if you find this code useful for your research:

@inproceedings{li2020hscnet,
    title = {Hierarchical Scene Coordinate Classification and Regression for Visual Localization},
    author = {Li, Xiaotian and Wang, Shuzhe and Zhao, Yi and Verbeek, Jakob and Kannala, Juho},
    booktitle = {CVPR},
    year = {2020}
}

About

Hierarchical Scene Coordinate Classification and Regression for Visual Localization

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published